"

Abiotic Factors Influencing Aquatic Biomes

Like terrestrial biomes, aquatic biomes are influenced by a series of abiotic factors. The aquatic medium—water— has different physical and chemical properties than air. Even if the water in a pond or other body of water is perfectly clear (no suspended particles), water still absorbs light. As one descends into a deep body of water, there will eventually be a depth the sunlight cannot reach. While some abiotic and biotic factors in a terrestrial ecosystem might obscure light (like fog, dust, or insect swarms), usually, these are not permanent features of the environment. The importance of light in aquatic biomes is central to the communities of organisms found in freshwater and marine ecosystems. In freshwater systems, stratification due to differences in density is perhaps the most critical abiotic factor and is related to the energy aspects of light. The thermal properties of water (heating and cooling rates) are significant to the function of marine systems and have major impacts on global climate and weather patterns. Marine systems are also influenced by large-scale physical water movements, such as currents; these are less important in most freshwater lakes.

The illustration divides the ocean into different zones based on depth. The top layer, called the photic zone, extends from the surface to 200 m. The aphotic zone extends from 200 to 4,000 m. They abyssal zone extends from 4,000 m to the ocean bottom. The ocean is also divided into zones based on distance from the shore. The intertidal zone extends from high to low tide. The neritic zone extends from the intertidal zone to the point at which ocean depth is about 200 m. At about this depth, the continental shelf ends in a steep slope to the ocean bottom. The oceanic zone is the area of open ocean. A thin section of the oceanic zone extending from top to bottom and adjacent to the continental shelf is labeled the benthic realm. All of the ocean’s open water is referred to as the pelagic realm, which is labeled on the left.
Figure 1. The ocean is divided into different zones based on water depth and distance from the shoreline.

The ocean is categorized into several areas or zones (Figure 1). All of the ocean’s open water is referred to as the pelagic zone. The benthic zone extends along the ocean bottom from the shoreline to the deepest parts of the ocean floor. Within the pelagic realm is the photic zone, the ocean’s portion that light can penetrate (approximately 200 m or 650 ft). At depths greater than 200 m, light cannot penetrate; thus, this is referred to as the aphotic zone. The majority of the ocean is aphotic and lacks sufficient light for photosynthesis. The deepest part of the ocean, the Challenger Deep (in the Mariana Trench, located in the western Pacific Ocean), is about 11,000 m (about 6.8 mi) deep. To give some perspective on the depth of this trench, the ocean is, on average, 4267 m. These zones are relevant to freshwater lakes as well.

Marine Biomes

The ocean is the largest marine biome. It is a continuous body of salt water that is relatively uniform in chemical composition; it is a weak solution of mineral salts and decayed biological matter. Within the ocean, coral reefs are a second kind of marine biome. Estuaries, coastal areas where salt water and fresh water mix, form a third unique marine biome.

Ocean

The physical diversity of the ocean is a significant influence on plants, animals, and other organisms. The ocean is categorized into different zones based on how far light reaches into the water. Each zone has a distinct group of species adapted to the biotic and abiotic conditions particular to that zone.

The intertidal zone, the zone between high and low tide, is the oceanic region closest to land (Figure 2). Generally, most people consider this ocean portion as a sandy beach. In some cases, the intertidal zone is indeed a sandy beach, but it can also be rocky or muddy. Organisms are exposed to air and sunlight at low tide and are mostly underwater, especially during high tide. Therefore, living things that thrive in the intertidal zone are adapted to being dry for long periods of time. The shore of the intertidal zone is also repeatedly struck by waves, and the organisms found there are adapted to withstand damage from the pounding action of the waves (Figure 2). The exoskeletons of shoreline crustaceans (such as the shore crab, Carcinus maenas) are tough and protect them from desiccation (drying out) and wave damage. Another consequence of the pounding waves is that few algae and plants establish themselves in the constantly moving rocks, sand, or mud.

Photo shows sea urchins, mussel shells, and starfish in a rocky intertidal zone.
Figure 2. Sea urchins, mussel shells, and starfish are often found in the intertidal zone, shown here in Kachemak Bay, Alaska. (credit: NOAA)

The neritic zone (Figure 1) extends from the intertidal zone to depths of about 200 m (or 650 ft) at the edge of the continental shelf. Because light can penetrate this depth, photosynthesis can occur. The water here contains silt and is well-oxygenated, low in pressure, and stable in temperature. Phytoplankton and floating Sargassum (a free-floating marine seaweed) provide a habitat for some sea life in the neritic zone. Zooplankton, protists, small fishes, and shrimp are found in the neritic zone and are the base of the food chain for most of the world’s fisheries.

Beyond the neritic zone is the open ocean area known as the oceanic zone (Figure 1). Within the oceanic zone, there is thermal stratification, where warm and cold waters mix because of ocean currents. Abundant plankton serves as the base of the food chain for larger animals such as whales and dolphins. Nutrients are scarce, and this is a relatively less productive part of the marine biome. When photosynthetic organisms and the protists and animals that feed on them die, their bodies fall to the bottom of the ocean, where they remain. The majority of organisms in the aphotic zone include sea cucumbers (phylum Echinodermata) and other organisms that survive on the nutrients contained in the dead bodies of organisms in the photic zone.

The deepest part of the ocean is the abyssal zone, at depths of 4000 m or greater. The abyssal zone (Figure 1) is very cold and has very high pressure, high oxygen content, and low nutrient content. A variety of invertebrates and fishes are found in this zone, but the abyssal zone does not have plants because of the lack of light. Cracks in the Earth’s crust called hydrothermal vents are found primarily in the abyssal zone. Around these vents, chemosynthetic bacteria utilize the hydrogen sulfide and other minerals emitted as an energy source and serve as the base of the food chain found in the abyssal zone.

Beneath the water is the benthic zone (Figure 1), comprised of sand, silt, and dead organisms. This is a nutrient-rich portion of the ocean because of the dead organisms that fall from the ocean’s upper layers. Because of this high level of nutrients, a diversity of sponges, sea anemones, marine worms, sea stars, fishes, and bacteria exist.

Coral Reefs

In this photo, several fish are swimming among coral. The coral at the front of the photo is blue with branched arms. Further back are anvil-shaped corals.
Figure 3. Coral reefs are formed by the calcium carbonate skeletons of coral organisms, which are marine invertebrates in the phylum Cnidaria. (credit: Terry Hughes)

Coral reefs are characterized by high biodiversity and the structures created by invertebrates living in warm, shallow waters within the ocean’s photic zone. They are mostly found within 30 degrees north and south of the equator. The Great Barrier Reef is a well-known reef system located several miles off the northeastern coast of Australia. The coral organisms (members of phylum Cnidaria) are colonies of saltwater polyps that secrete a calcium carbonate skeleton. These calcium-rich skeletons slowly accumulate, forming the underwater reef (Figure 3). Corals found in shallower waters (at a depth of approximately 60 m or about 200 ft) have a mutualistic relationship with photosynthetic unicellular algae. The relationship provides corals with the majority of the nutrition and energy they require. The waters in which these corals live are nutritionally poor; without this mutualism, it would not be possible for large corals to grow. Some corals living in deeper and colder water do not have a mutualistic relationship with algae; these corals attain energy and nutrients using stinging cells on their tentacles to capture prey. It is estimated that more than 4,000 fish species inhabit coral reefs. These fishes can feed on coral, other invertebrates, or the seaweed and algae that are associated with the coral.

Watch this National Oceanic and Atmospheric Administration (NOAA) video to see marine ecologist Dr. Peter Etnoyer discusses his research on coral organisms.

EVOLUTION CONNECTION: Global Decline of Coral Reefs

It takes a long time to build a coral reef. The animals that create coral reefs have evolved over millions of years, continuing to slowly deposit the calcium carbonate that forms their characteristic ocean homes. Bathed in warm tropical waters, the coral animals and their symbiotic algal partners evolved to survive at the upper limit of ocean water temperature.

Together, climate change and human activity pose dual threats to the long-term survival of the world’s coral reefs. Coral reefs suffer as global warming due to fossil fuel emissions raises ocean temperatures. The excessive warmth causes the reefs to expel their symbiotic, food-producing algae, resulting in a phenomenon known as bleaching. When bleaching occurs, the reefs lose much of their characteristic color as the algae, and the coral animals die if the loss of the symbiotic zooxanthellae is prolonged.

Rising atmospheric carbon dioxide levels further threaten the corals in other ways; as CO2 dissolves in ocean waters, it lowers the pH and increases ocean acidity. As acidity increases, it interferes with the calcification that normally occurs as coral animals build their calcium carbonate homes.

When a coral reef begins to die, species diversity plummets as animals lose food and shelter. Coral reefs are also economically important tourist destinations, so the decline of coral reefs poses a serious threat to coastal economies.

Human population growth has damaged corals in other ways, too. As human coastal populations increase, the runoff of sediment and agricultural chemicals has increased, too, causing some of the once-clear tropical waters to become cloudy. At the same time, overfishing of popular fish species has allowed the predator species that eat corals to go unchecked.

Although a rise in global temperatures of 1–2˚C (a conservative scientific projection) in the coming decades may not seem large, it is very significant to this biome. When change occurs rapidly, species can become extinct before evolution leads to new adaptations. Many scientists believe that global warming, with its rapid (in terms of evolutionary time) and inexorable increases in temperature, is tipping the balance beyond the point at which many of the world’s coral reefs can recover.

Estuaries: Where the Ocean Meets Fresh Water

Estuaries are biomes where a source of fresh water, such as a river, meets the ocean. Therefore, both fresh water and salt water are found in the same vicinity; mixing results in diluted (brackish) saltwater. Estuaries form protected areas where many of the young offspring of crustaceans, mollusks, and fish begin their lives. Salinity is a very important factor that influences the organisms and the adaptations of the organisms found in estuaries. The salinity of estuaries varies and is based on the flow rate of their freshwater sources. Once or twice a day, high tides bring salt water into the estuary. Low tides occurring at the same frequency reverse the current of salt water.

The short-term and rapid variation in salinity due to the mixing of fresh water and salt water is a difficult physiological challenge for the plants and animals that inhabit estuaries. Many estuarine plant species are halophytes: plants that can tolerate salty conditions. Halophytic plants are adapted to deal with the salinity resulting from saltwater on their roots or from sea spray. In some halophytes, filters in the roots remove the salt from the water the plant absorbs. Other plants can pump oxygen into their roots. Animals, such as mussels and clams (phylum Mollusca), have developed behavioral adaptations that expend a lot of energy to function in this rapidly changing environment. When these animals are exposed to low salinity, they stop feeding, close their shells, and switch from aerobic respiration (using gills) to anaerobic respiration (a process that does not require oxygen). When high tide returns to the estuary, the salinity and oxygen content of the water increases, and these animals open their shells, begin feeding, and return to aerobic respiration.

Freshwater Biomes

Freshwater biomes include lakes and ponds (standing water) as well as rivers and streams (flowing water). They also include wetlands, which will be discussed later. Humans rely on freshwater biomes to provide aquatic resources for drinking water, crop irrigation, sanitation, and industry. These various roles and human benefits are referred to as ecosystem services. Lakes and ponds are found in terrestrial landscapes and are connected with abiotic and biotic factors influencing these terrestrial biomes.

Lakes and Ponds

Lakes and ponds can range from a few square meters to thousands of square kilometers. Temperature is an important abiotic factor affecting living things in lakes and ponds. In the summer, thermal stratification of lakes and ponds occurs when the upper layer of water is warmed by the sun and does not mix with deeper, cooler water. Light can penetrate within the photic zone of the lake or pond. Phytoplankton (small photosynthetic organisms such as algae and cyanobacteria that float in the water) are found here and carry out photosynthesis, providing the base of the food web of lakes and ponds. Zooplankton (very small animals that float in the water), such as rotifers and small crustaceans, consume these phytoplankton. At the bottom of lakes and ponds, bacteria in the aphotic zone break down dead organisms that sink to the bottom.

This photo shows a body of water clogged with thick, green algae.
Figure 4. The uncontrolled growth of algae in this lake has resulted in an algal bloom.

Nitrogen and phosphorus are important limiting nutrients in lakes and ponds. Because of this, they are determining factors in the amount of phytoplankton growth in lakes and ponds. When there is a large input of nitrogen and phosphorus (from sewage and runoff from fertilized lawns and farms, for example), algae growth skyrockets, resulting in a large accumulation of algae called an algal bloom. Algal blooms (Figure 4) can become so extensive that they reduce light penetration in water. As a result, the lake or pond becomes aphotic, and photosynthetic plants rooted in the lake bottom cannot survive. When the algae die and decompose, severe oxygen depletion of the water occurs. Fishes and other organisms that require oxygen are more likely to die, resulting in dead zones across the globe. Lake Erie and the Gulf of Mexico represent freshwater and marine habitats where phosphorus control and stormwater runoff pose significant environmental challenges.

Rivers and Streams

Rivers and streams are continuously moving bodies of water carrying large amounts from the source, or headwater, to a lake or ocean. The largest rivers include the Nile River in Africa, the Amazon River in South America, and the Mississippi River in North America.

Abiotic features of rivers and streams vary along the length of the river or stream. Streams begin at a point of origin referred to as source water. The source water is usually cold, low in nutrients, and clear. The channel (the width of the river or stream) is narrower than any other place along the length of the river or stream. Because of this, the current is often faster here than at any other point of the river or stream.

The fast-moving water results in minimal silt accumulation at the bottom of the river or stream; therefore, the water is clear. Photosynthesis here is mostly attributed to algae growing on rocks; the swift current inhibits the growth of phytoplankton. Additional energy input can come from leaves or other organic material that falls into the river or stream from trees and other plants that border the water. The organic material and nutrients are returned to the water when the leaves decompose. Plants and animals have adapted to this fast-moving water. For instance, leeches (phylum Annelida) have elongated bodies and suckers on both ends. These suckers attach to the substrate, keeping the leech anchored in place. Freshwater trout species (phylum Chordata) are an important predator in these fast-moving rivers and streams.

As the river or stream flows away from the source, the width of the channel gradually widens, and the current slows. This slow-moving water, caused by the gradient decrease and the volume increase as tributaries unite, has more sedimentation. Phytoplankton can also be suspended in slow-moving water. Therefore, the water will not be as clear as it is near the source. The water is also warmer. Worms (phylum Annelida) and insects (phylum Arthropoda) can burrow into the mud. The higher-order predator vertebrates (phylum Chordata) include waterfowl, frogs, and fishes. These predators must find food in these slow-moving, sometimes murky, waters, and unlike the trout in the waters at the source, these vertebrates may not be able to use vision as their primary sense to find food. Instead, they are more likely to use taste or chemical cues to find prey.

Wetlands

This photo shows mangrove trees growing in black water. The trunks of the mangroves widen and split toward the bottom. A white bird stands in the water among the trees.
Figure 5. Located in southern Florida, Everglades National Park is vast array of wetland environments, including sawgrass marshes, cypress swamps, and estuarine mangrove forests. Here, a great egret walks among cypress trees. (credit: NPS)

Wetlands are environments where the soil is permanently or periodically saturated with water. Wetlands are different from lakes because wetlands are shallow bodies of water that may periodically dry out. Emergent vegetation consists of wetland plants rooted in the soil but with portions of leaves, stems, and flowers extending above the water’s surface. Several types of wetlands include marshes, swamps, bogs, mudflats, and salt marshes (Figure 5).

License

Icon for the Creative Commons Attribution 4.0 International License

Introduction to Environmental Sciences and Sustainability Copyright © 2023 by Emily P. Harris is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.