"

Practice Exercise Answers

Morgan Chase

In the current edition of Technical Mathematics: Applications for the Applied Environmental Sciences, all practice exercises are taken directly from Technical Mathematics, Second Edition by Morgan Chase at Clackamas Community College.

0.1 Order of Operations

  1. 7
  2. 13
  3. 7
  4. 13
  5. 2
  6. 8
  7. 18
  8. 6
  9. 25
  10. 49
  11. 80
  12. 31
  13. 28
  14. 67
  15. 22
  16. 4
  17. 160
  18. 19
  19. 2
  20. 12
  21. 40
  22. 200
  23. 2
  24. 14
  25. 92+30=48°F
  26. (7230)÷2=21°C

 

 

0.2 Negative Numbers

  1. 5
  2. 5
  3. 15
  4. 22
  5. 4
  6. 4
  7. 9
  8. 9
  9. 18°F
  10. 3
  11. 200
  12. 3
  13. 3
  14. 7
  15. 7
  16. 7
  17. 7
  18. 3
  19. 3
  20. 55
  21. 55
  22. 11,123 ft
  23. 543 ft
  24. 12
  25. 40
  26. 18
  27. 21
  28. 4
  29. 8
  30. 16
  31. 32
  32. 7
  33. 4
  34. 9
  35. 0
  36. 0
  37. undefined
  38. 19
  39. 73
  40. 1
  41. 6
  42. 8
  43. 40

 

 

0.4 Decimals

  1. 90.23
  2. 7.056
  3. 16.55
  4. 184.015
  5. 8.28
  6. 15.756
  7. 4,147
  8. 414.7
  9. 41.47
  10. 4.147
  11. 65,625
  12. 65.625
  13. 6.5625
  14. $656.25
  15. 243.5
  16. 2,435
  17. 243,500
  18. 24.35
  19. 6,000
  20. 6,380
  21. 0.71
  22. 0.715
  23. $3.67 per month
  24. 7.5 miles per hour

 

 

0.3 Fractions

  1. 1130
  2. 1930
  3. 1215
  4. 812/
  5. 7
  6. 1
  7. 0
  8. undefined
  9. 34
  10. 53
  11. 2
  12. 12
  13. 512
  14. 1
  15. at least 45 questions
  16. 16
  17. 35
  18. 6 scoops
  19. A requires 112 cup more than B
  20. 12 of the pizza
  21. 23 more
  22. 58 inches combined
  23. 18 inches difference
  24. 712 combined
  25. 112 more
  26. 2.75
  27. 0.35
  28. 0.5 or 0.555...
  29. 1.63 or 1.636363...
  30. 1112
  31. 423
  32. 115
  33. 203
  34. 1038
  35. 478
  36. 816
  37. 156 cup

 

 

0.5 Precision and Rounding

  1. exact value
  2. approximation
  3. exact value
  4. approximation
  5. exact value
  6. approximation
  7. three significant figures
  8. four significant figures
  9. five significant figures
  10. two significant figures
  11. three significant figures
  12. four significant figures
  13. two significant figures; the actual value could be anywhere between 28,500 and 29,500
  14. three significant figures; the actual value could be anywhere between 28,950 and 29,050
  15. four significant figures; the actual value could be anywhere between 28,995 and 29,005
  16. five significant figures; the actual value could be anywhere between 28,999.5 and 29,000.5
  17. 51,800
  18. 51,840
  19. 4.3
  20. 4.28
  21. 14,000
  22. 14,000
  23. 2.6
  24. 2.60
  25. 29,000 ft
  26. 29,000 ft
  27. 29,030 ft
  28. 29,032 ft
  29. 29,031.7 ft
  30. 107
  31. 640
  32. 14.4
  33. 12
  34. $23

 

 

Exercises

Module 6: Precision and GPE

  1. thousands
  2. hundreds
  3. tens
  4. thousandths
  5. ten thousandths
  6. hundred thousandths
  7. [latex]82,000[latex]
  8. [latex]82,\overline{0}00[latex]
  9. [latex]82,0\overline{0}0[latex]
  10. [latex]0.6[latex]
  11. [latex]0.60[latex]
  12. [latex]0.600[latex]
  13. [latex]39.3[latex] lb
  14. [latex]39[latex] lb
  15. [latex]\textdollar9,800[latex]
  16. [latex]\textdollar8\overline{0}0[latex]
  17. thousands place; the nearest [latex]1,000[latex] people
  18. [latex]\pm 500[latex] people
  19. hundred thousandths place; the nearest [latex]0.00001[latex] in
  20. [latex]\pm 0.000005[latex] in
  21. hundredths place; the nearest [latex]0.01[latex] mil
  22. [latex]\pm 0.005[latex] mil
  23. [latex]30\overline{0}[latex] miles
  24. ones place; the nearest [latex]1[latex] mile
  25. [latex]\pm 0.5[latex] mi
  26. ones place; the nearest [latex]1[latex] minute
  27. [latex]\pm 0.5[latex] min
  28. two sig figs
  29. three sig figs
  30. [latex]55[latex] mi/hr
  31. When dividing, we must round the result based on the accuracy; i.e., the number of significant figures.

   

Exercises

Module 7: Formulas

  1. [latex]\textdollar2.46[latex]
  2. [latex]\textdollar4.14[latex]
  3. [latex]\textdollar17.80[latex]
  4. [latex]\textdollar24.80[latex]
  5. [latex]\textdollar3.80[latex]
  6. [latex]6[latex] representatives
  7. [latex]10[latex] representatives
  8. [latex]52[latex] representatives
  9. [latex]8[latex] electoral votes
  10. [latex]12[latex] electoral votes
  11. [latex]54[latex] electoral votes
  12. [latex]\approx115[latex]°F; the official record high in the city was 116°F.
  13. [latex]37[latex]°C
  14. [latex]-0.4[latex]°F
  15. [latex]200[latex]°C
  16. [latex]90[latex] mm Hg
  17. around [latex]107[latex] mm Hg
  18. [latex]70[latex] in
  19. [latex]74[latex] in
  20. yes
  21. no; too large
  22. no; too small
  23. yes

   

Exercises

Module 8: Perimeter and Circumference

  1. [latex]70[latex] ft
  2. [latex]58[latex] cm
  3. [latex]28[latex] cm
  4. [latex]104[latex] ft
  5. [latex]130[latex] ft
  6. [latex]56[latex] ft
  7. [latex]24[latex] in
  8. [latex]20[latex] cm
  9. [latex]28.3[latex] in
  10. [latex]18.8[latex] cm
  11. [latex]44.0[latex] ft
  12. [latex]53[latex] m

   

3.1 Converting Among Ratio, Decimal & Percent

  1. 47%
  2. 53%
  3. 71100
  4. 1.3100=131000
  5. 0.04100=12500
  6. 106100=5350
  7. 0.71
  8. 0.013
  9. 0.0004
  10. 1.06
  11. 23%
  12. 7%
  13. 8.5%
  14. 250%
  15. 28%
  16. 12.5%

 

3.2 Solving Percent Problems

17. 31.5

18. 22.5

19. 67.5

20. 100

21. 38.6

22. 2.25

23. \textdollar9.35

24. \textdollar119.32

 

Module 12: Percents Part 2 and Error Analysis

  1. [latex]93\%[latex] or [latex]93.3\%[latex]
  2. [latex]37.5\%[latex]
  3. [latex]\textdollar2,500[latex]
  4. [latex]720[latex]
  5. [latex]93\%[latex] or [latex]93.3\%[latex]
  6. [latex]37.5\%[latex]
  7. [latex]\textdollar2,500[latex]
  8. [latex]720[latex]
  9. [latex]44.8\%[latex] or [latex]45\%[latex]
  10. [latex]50[latex] grams of added sugars is the recommended daily intake for a [latex]2,000[latex] calorie diet.
  11. [latex]56\%[latex] increase
  12. [latex]10.1\%[latex] sales tax
  13. [latex]36\%[latex] decrease
  14. [latex]2.7\%[latex] decrease
  15. [latex]0.1875\div25\approx0.75\%[latex]
  16. [latex]0.13\div10.8\approx1.2\%[latex]
  17. [latex]4.806[latex] g; [latex]5.194[latex] g
  18. [latex]3.88\%[latex]
  19. [latex]5.443[latex] g; [latex]5.897[latex] g
  20. [latex]4.00\%[latex]

Module 27: Percents Part 3

  1. [latex]\textdollar1,299.00[latex]
  2. [latex]14,861[latex] students; notice that if the percent had fewer than five sig figs, we wouldn't have been able to get an answer that was accurate to the nearest whole number.
  3. Yes, you can! Each bottle cost [latex]\textdollar3.59[latex]. [caption id="attachment_699" align="alignnone" width="250"] Real time screenshot of my phone's calculator.[/caption]
  4. [latex]\textdollar3.20[latex] million
  5. [latex]873,900[latex] people
  6. [latex]\textdollar16[latex]; the percent has only two sig figs, so it doesn't make sense to assume that the price was [latex]\textdollar16.13[latex]. They probably rounded the percent from [latex]68.75\%[latex] to make the numbers in the advertisement seems less complicated.

 

2.6 Setting Up and Solving Proportions

7. 34=34; true

8. 2345; false

9. 168=168; true

10. 200240; false

11. 7060; false

12. 20=20; true

13. x=12

14. n=5

15. k=4

16. w=10

17. x=10.4

18. m=2.0

19. 256 miles

20. 20 hours

21. 50 miles (rounding to one sig fig seems like a good idea here)

22. 190 pixels wide

 

Exercises

Module 13: The US Measurement System

We generally won't worry about significant figures in these answers; we'll probably say "[latex]2[latex] miles" even if "[latex]2.000[latex] miles" is technically correct.

  1. [latex]54[latex] in
  2. [latex]54[latex] ft
  3. [latex]36[latex] in
  4. [latex]1,760[latex] yd
  5. [latex]14\frac{2}{3}[latex] ft or [latex]14[latex] ft [latex]8[latex] in
  6. [latex]15[latex] yd
  7. [latex]2[latex] mi
  8. [latex]30[latex] yd
  9. [latex]40[latex] oz
  10. [latex]2,400[latex] lb
  11. 18.75 lb
  12. [latex]32,000[latex] oz
  13. [latex]48[latex] fl oz
  14. [latex]7[latex] pt
  15. [latex]8[latex] pt
  16. [latex]5[latex] c
  17. [latex]1.25[latex] gal
  18. [latex]64[latex] fl oz
  19. [latex]3[latex] lb [latex]7[latex] oz
  20. [latex]7[latex] c [latex]3[latex] fl oz
  21. [latex]15[latex] ft [latex]2[latex] in
  22. [latex]4[latex] t [latex]500[latex] lb
  23. [latex]20[latex] lb or [latex]20[latex] lb [latex]0[latex] oz combined
  24. [latex]3[latex] lb [latex]2[latex] oz heavier
  25. [latex]9[latex] ft [latex]1[latex] in combined
  26. [latex]1[latex] ft [latex]5[latex] in longer

 

Exercises

 

Module 14: The Metric System

  1. [latex]5[latex] m
  2. [latex]28[latex] cm
  3. [latex]3.8[latex] km
  4. [latex]1.6[latex] m
  5. [latex]160[latex] cm
  6. [latex]3[latex] mm
  7. [latex]536[latex] cm
  8. [latex]5,360[latex] mm
  9. [latex]1,609[latex] m
  10. [latex]160,900[latex] cm
  11. [latex]0.297[latex] m
  12. [latex]29.7[latex] cm
  13. [latex]0.828[latex] km
  14. [latex]82.8[latex] dam
  15. [latex]100[latex] g
  16. [latex]80[latex] kg
  17. [latex]500[latex] mg
  18. [latex]2,000[latex] kg
  19. [latex]2,270[latex] g
  20. [latex]2,270,000[latex] mg
  21. [latex]6,500[latex] cg
  22. [latex]65,000[latex] mg
  23. [latex]0.065[latex] kg
  24. [latex]9.5[latex] cg
  25. [latex]0.095[latex] g
  26. [latex]50[latex] L
  27. [latex]30[latex] mL
  28. [latex]0.5[latex] L
  29. [latex]10.5[latex] dL
  30. [latex]1,750[latex] mL
  31. [latex]0.25[latex] L
  32. they are equal in size
  33. about [latex]11[latex] to [latex]1[latex]
  34. [latex]4[latex] bottles; this is easier if you know that a 500-milliliter bottle of Mexican Coke is called a medio litro. [caption id="attachment_758" align="alignnone" width="300"] Doce litros de Coca-Cola[/caption]

   

1.3 Converting Length or Distance

We may round some of these answers to three significant figures even if the given number has fewer than three sig figs. On the other hand, you'll see that some of these answers include a critique of a manufacturer's decision to round numbers a certain way.
  1. 31 mi
  2. 183 cm
  3. 164.0 ft
  4. yes, 4 in=101.6 mm according to the conversion, but is it really 4.000 in to begin with? Rounding the result to 100 mm or 102 mm seems reasonable.
  5. 20 in converts to around 50.8 cm, and 50.0 cm converts to around 19.7 in. It looks like somebody used the conversion 1 in=2.5 cm, which is fine if you're estimating but not if you're going to report a number to three sig figs.
  6. not exactly but they're pretty close; the error is around 0.3%.

 

 

1.6 Converting Rates

We will generally round these answers to three significant figures; your answer may be slightly different depending on which conversion ratio you used.

  1. 525,600 min; if you're familiar with the musical Rent, then you already knew the answer.
  2. this is roughly 31.7 years, which is indeed possible
  3. 37.6 km/hr
  4. 23.3 mi/hr
  5. 1,770 mi/hr
  6. 29.5 mi in 1 min
  7. 20.3 min
  8. 0.17 mi/gal
  9. 5.8 gal/mi
  10. 171 gal in 1 min

 

 

Exercises

Module 17: Angles

  1. right angle
  2. obtuse angle
  3. reflexive angle
  4. straight angle
  5. acute angle
  6. [latex]a=127^\circ[latex]; [latex]b=53^\circ[latex]; [latex]c=127^\circ[latex]
  7. [latex]27^\circ[latex]
  8. [latex]97^\circ[latex]
  9. [latex]23^\circ[latex] each
  10. [latex]45^\circ[latex] each
  11. [latex]60^\circ[latex] each
  12. [latex]A=61^\circ[latex]; [latex]B=80^\circ[latex]; [latex]C=39^\circ[latex]
  13. [latex]18.9111^\circ[latex]
  14. [latex]155.6808^\circ[latex]
  15. [latex]34.1924^\circ[latex]
  16. [latex]29^\circ58'30''[latex]
  17. [latex]31^\circ8'15''[latex]
  18. [latex]76^\circ20'48.1''[latex]

   

Module 18: Triangles

  1. right isosceles triangle
  2. obtuse scalene triangle
  3. acute equilateral triangle (yes, an equilateral triangle will always be acute)
  4. [latex]w=35\text{ ft}[latex]
  5. [latex]x=8\text{ cm}[latex]; [latex]y=10.5\text{ cm}[latex]
  6. [latex]d=268\text{ ft}[latex]
  7. [latex]n=55\text{ cm}[latex]
  8. this is a right triangle, because [latex]5^2+12^2=13^2[latex].
  9. this is not a right triangle, because [latex]8^2+17^2\neq19^2[latex].
  10. [latex]7.07[latex]
  11. [latex]17.20[latex]
  12. [latex]30.71[latex]
  13. [latex]10\text{ ft}[latex]
  14. [latex]15\text{ ft}[latex]
  15. [latex]12.3\text{ cm}[latex]
  16. [latex]1.8\text{ cm}[latex]

Exercises

Module 19: Area of Polygons and Circles

We may occasionally include extra sig figs in these answers so you can be sure that your answer matches ours.

  1. [latex]20\text{ cm}^2[latex]
  2. [latex]16\text{ cm}^2[latex]
  3. [latex]4.86\text{ m}^2[latex]
  4. [latex]12.25\text{ ft}^2[latex]
  5. [latex]120\text{ in}^2[latex]
  6. [latex]360\text{ m}^2[latex]
  7. [latex]210\text{ ft}^2[latex]
  8. [latex]126\text{ cm}^2[latex]
  9. [latex]38.5\text{ cm}^2[latex]
  10. [latex]204\text{ ft}^2[latex]
  11. [latex]2,160\text{ in}^2[latex]
  12. [latex]36\text{ m}^2[latex]
  13. [latex]124\text{ cm}^2[latex]
  14. [latex]192\text{ cm}^2[latex]
  15. [latex]28.3\text{ cm}^2[latex]
  16. [latex]220\text{ m}^2[latex]
  17. [latex]154\text{ ft}^2[latex]
  18. [latex]63.6\text{ in}^2[latex]

   

Exercises

Module 20: Composite Figures

  1. [latex]64\text{ ft}[latex]
  2. [latex]189\text{ ft}^2[latex]
  3. [latex]590\text{ cm}^2[latex]; the area of the rectangle is [latex]800\text{ cm}^2[latex] and the areas of the triangles are [latex]70\text{ cm}^2[latex] and [latex]140\text{ cm}^2[latex].
  4. [latex]590\text{ cm}^2[latex]; hey, that's what we got for #3!
  5. [latex]148\text{ m}[latex]
  6. [latex]940\text{ m}^2[latex]
  7. Based on the stated measurements, the distance around the track will be 401 meters, which appears to be 1 meter too long. In real life, precision would be very important here, and you might ask for the measurements to be given to the nearest tenth of a meter.
  8. around [latex]9,620\text{ m}^2[latex]
  9. [latex]1,960\text{ cm}^2[latex]
  10. [latex]178.5\text{ cm}[latex]
  11. [latex]29\text{ ft}^2[latex]
  12. [latex]47\text{ ft}[latex]
  13. around [latex]21.5\%[latex] (Hint: Make up an easy number for the side of the square, like 2 or 10.)
  14. around [latex]36.3\%[latex] (Hint: The diagonals of the square are equal to the circle's diameter.)

   

1.4 Converting Area

We may occasionally include extra sig figs in these answers so that you can be sure that your answer matches ours.
  1. 162 ft2
  2. 162 ft2
  3. 7 ft2
  4. 7 ft2
  5. 7,776 in2
  6. 8.3 ac
  7. 180,000 cm2
  8. 180,000 cm2
  9. 623.7 cm2
  10. 623.7 cm2
  11. 6 m2
  12. 4 ha
  13. 376 km2
  14. 2,000 ha, rounded to two sig figs
  15. 603 cm2
  16. [latex]75,300\text{ ft}^2/[latex], rounded to three sig figs

   

Exercises

Module 22: Surface Area of Common Solids

  1. [latex]36\text{ cm}^2[latex]
  2. [latex]76\text{ cm}^2[latex]
  3. [latex]471\text{ cm}^2[latex]
  4. [latex]628\text{ cm}^2[latex]
  5. [latex]616\text{ cm}^2[latex]
  6. [latex]380\text{ in}^2[latex]

   

Exercises

Module 23: Area of Regular Polygons

All answers have been given to two or three significant figures.

  1. [latex]6,900\text{ in}^2[latex]
  2. [latex]94\text{ cm}^2[latex]
  3. [latex]750\text{ in}^2[latex]
  4. [latex]751\text{ mm}^2[latex]
  5. [latex]480\text{ cm}^2[latex]
  6. [latex]110\text{ m}^2[latex]
  7. [latex]280\text{ mm}^2[latex] (the area of the circle [latex]\approx1,660\text{ mm}^2[latex] and the area of the hexagon is [latex]1,380\text{ mm}^2[latex])

   

Exercises

Module 24: Volume of Common Solids

  1. [latex]40\text{ cm}^3[latex]
  2. [latex]531\text{ cm}^3[latex]
  3. [latex]45\text{ cm}^3[latex]
  4. [latex]350\text{ cm}^3[latex]
  5. [latex]520\text{ cm}^3[latex]
  6. [latex]22,600\text{ ft}^3[latex]
  7. [latex]3.7\text{ mm}^3[latex]
  8. [latex]1,440\text{ cm}^3[latex]
  9. [latex]697\text{ in}^3[latex] or [latex]7\overline{0}0\text{ in}^3[latex]
  10. [latex]22.7\text{ cm}^3[latex] (the cylinder's volume [latex]\approx14.1\text{ cm}^3[latex] and the hemisphere's volume [latex]\approx8.6\text{ cm}^3[latex].)
  11. [latex]37.6\text{ ft}^3[latex] (the cylinder's volume [latex]\approx29.45\text{ ft}^3[latex] and the two hemispheres' combined volume [latex]\approx8.18\text{ ft}^3[latex])
  12. [latex]37.6\text{ ft}^3\approx282\text{ gal}[latex], which is more than [latex]250\text{ gal}[latex].

   

1.5 Converting Volume

  1. the result is very close to 1 cubic yard: (112 in14 in10 in)3 crates=47,040 in31.01 yd3
  2. this estimate is also 1 cubic yard: (9 ft1 ft1 ft)3 crates=27 ft3=1 yd3
  3. around 60 gallons
  4. yes, the can is able to hold 12 fluid ounces; the can's volume is roughly 23.3 in312.9 fl oz.
  5. 5 gallons
  6. around 2,300 to 2,400 liters; a calculator says 2,356 liters which should technically be rounded up to 2,400 liters, but it would be reasonable to round down to 2,300 liters instead if you considered the volume of the benches and the fact that the sides might slope inwards near to bottom of the tub.
  7. the rectangular section of the carton has a volume of 1.7 liters, which is larger than the required 1.5 L.
  8. 21 cm high
    Independent verification from my kitchen.
  9. 19.6 yd3
  10. 530 ft3
  11. 1.53 m3
  12. 327 in3
  13. 5,350 cm3

 

 

Exercises

Module 26: Pyramids and Cones

  1. 1,280\text{ cm}^3
  2. 2,420,000\text{ m}^3
  3. 544\text{ cm}^2; 80\overline{0}\text{ cm}^2
  4. 82,300\text{ m}^2
  5. 310\text{ cm}^3 (if we had greater accuracy, the result would be 314.16 because it's 100 times \pi.)
  6. 38\text{ ft}^3
  7. 47\text{ ft}^2; 75\text{ ft}^2
  8. 2\overline{0}0\text{ cm}^2; 280\text{ cm}^2

 

Exercises

Module 28: Mean, Median, Mode

  1. 10.3\text{ min}
  2. \textdollar4.488
  3. 11.0\text{ min} (because it is the seventh value in the list of thirteen)
  4. \textdollar4.475
  5. \textdollar256,000
  6. \textdollar250,000
  7. \textdollar338,000
  8. \textdollar275,000
  9. the median is more representative because the mean is higher than five of the six home values.
  10. 11.0\text{ min} (because it appears four times in the list)
  11. no mode (there are no repeated values)
  12. AT&T Mobility
  13. Samoas and Thin Mints
  14. 12.2 games
  15. 12 games
  16. 12 games
  17. they all represent the data fairly well; 12 wins represents a typical Patriots season.
  18. 6.8 games
  19. 7 games
  20. 6 games
  21. they all represent the data fairly well; 6 or 7 wins represents a typical Bills season.
  22. 98.2 grams; the mean doesn't seem to represent a typical clementine because there is a group of smaller ones (from 82 to 94 grams) and a group of larger ones (from 102 to 109 grams) with none in the middle.
  23. 94 grams; for the same reason, the median doesn't represent a typical clementine, but you could say it helps split the clementines into a lighter group and a heavier group.
  24. no mode; too many values appear twice.
  25. 98.3 grams; this is a small increase over the previous mean.
  26. 94 grams; the median does not change when one of the highest numbers increases.
  27. 109 grams; you might say it represents the mass of a typical large clementine, but it doesn't represent the entire group.

 

 

Exercises

Module 30: Standard Deviation

  1. 60.5; 66.5
  2. 57.5; 69.5
  3. 54.5; 72.5
  4. 66.5; 72.5
  5. 63.5; 75.5
  6. 60.5; 78.5
  7. 68\% because 100\%-(16\%+16\%)=68\%
  8. 195 lb because this is halfway between 160 and 230 lb
  9. 35 lb because 195-35 lb and 195+35 lb encompasses 68\% of the data
  10. 125; 265
  11. 8.8; 15.6
  12. You would not have predicted this from the data because it is more than two standard deviations below the mean, so there would be a roughly 2.5\% chance of this happening randomly. In fact, (12.2-7)\div1.7 is slightly larger than 3, so this is more than three standard deviations below the mean, making it even more unlikely. (You might have predicted that the Patriots would get worse when Tom Brady left them for Tampa Bay, but you wouldn't have predicted only 7 wins based on the previous nineteen years of data.)
  13. 3.4; 10.2
  14. You would not predict this from the data because it is more than two standard deviations above the mean, so there would be a roughly 2.5\% chance of this happening randomly. In fact, (13-6.8)\div1.7\approx3.6, so this is more than three standard deviations above the mean, making it even more unlikely. This increased win total is partly due to external forces (i.e., the Patriots becoming weaker and losing two games to the Bills) but even 11 wins would have been a bold prediction, let alone 13.
  15. 3.9; 14.3
  16. The trouble with making predictions about the Broncos is that their standard deviation is so large. You could choose any number between 4 and 14 wins and be within the 95\% interval. (9.1-5)\div2.6\approx1.6, so this is around 1.6 standard deviations below the mean, which makes it not very unusual. Whereas the Patriots and Bills are more consistent, the Broncos' win totals fluctuate quite a bit and are therefore more unpredictable.

 

 

Exercises

Module 31: Right Triangle Trigonometry

  1. the adjacent side is e, the opposite side is f, and the hypotenuse is d.
  2. the adjacent side is x, the opposite side is y, and the hypotenuse is r.
  3. \frac{3}{5}=0.6
  4. \frac{4}{5}=0.8
  5. \frac{3}{4}=0.75
  6. \frac{4}{5}=0.8
  7. \frac{3}{5}=0.6
  8. \frac{4}{3}\approx1.333
  9. 0.6000
  10. 0.8000
  11. 0.7500
  12. 0.8000
  13. 0.6000
  14. 1.333
  15. z\approx4.6\text{ cm}
  16. g\approx2.6\text{ cm}
  17. b\approx5.706\text{ in}
  18. p\approx75.51\text{ mm}
  19. y\approx136.18\text{ mm}
  20. d\approx296.87\text{ mm}
  21. the wire is approximately 27\text{ ft} long
  22. \approx17.85\text{ ft}, which is roughly 17\text{ ft}, 10\text{ in}
  23. No; 64\cdot\text{tan }1^\circ\approx1.1\text{ ft}, so the puck will hit the fabric over 1 foot away from the center of the hole. (The person in the photo was given a bunch of pucks and 30 seconds to score, but he scored on his first shot. Boston Bruins at Vancouver Canucks, February 24, 2024.)
  24. 36.87^\circ
  25. 60^\circ
  26. 53.13^\circ
  27. \angle A\approx36.47^\circ
  28. \angle1\approx42.03^\circ
  29. \angle1\approx30.76^\circ
  30. \angle y\approx52.88^\circ
  31. \angle1\approx55.28^\circ
  32. \angle x\approx31.50^\circ; \angle y\approx58.50^\circ
  33. \text{tan}^{-1}\left(\frac{4}{1}\right)\approx76^\circ angle of elevation
  34. Yes; \text{sin}^{-1}\left(\frac{2}{25}\right)\approx4.59^\circ, which is less than 4.75^\circ.
  35. \text{tan}^{-1}\left(\frac{17}{14}\right)\approx50.5^\circ
  36. 17\div\text{sin }51^\circ\approx22.0
  37. 14\div\text{cos }51^\circ\approx22.0
  38. \sqrt{14^2+17^2}\approx22.0
  39. All three answers are the same rounded to three significant figures. This is true because we rounded \angle A to the nearest tenth; if we had rounded it to 51^\circ instead of 50.5^\circ, we would have decreased the accuracy of #36 & #37 to only two sig figs and the three results all would have been slightly different.
  40. \approx23^\circ
  41. \approx8,900\text{ ft}

 

Exercises

 

Module 32: Slope

  1. 0.36\text:12, 0.03, 3\%
  2. 0.60\text:12, 0.05, 5\%
  3. 1.00\text:12, 0.0833, 8.33\%
  4. 2.16\text:12, 0.18, 18\%
  5. 1.72^\circ
  6. 2.86^\circ
  7. 4.76^\circ
  8. 10.20^\circ
  9. 0.5\text{ ft}
  10. 1\text{ ft}
  11. 5\text{ ft}
  12. \text{tan}^{-1}\left(20/12\right)\approx59^\circ from vertical. (this would be an angle of depression of 31^\circ.)
  13. 30\text{ ft}; the proportion \frac{1}{12}=\frac{2.5}{x} gives a result of exactly 30\text{ ft}.
    Using the result from #7, the equation \text{tan}\left(4.76^\circ\right)=\frac{2.5}{x} gives a result very close to 30.0\text{ ft}.

 

 

 

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Practice Exercise Answers Copyright © by Morgan Chase is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.