Practice Exercise Answers
Morgan Chase
In the current edition of Technical Mathematics: Applications for the Applied Environmental Sciences, all practice exercises are taken directly from Technical Mathematics, Second Edition by Morgan Chase at Clackamas Community College.
0.1 Order of Operations
- [latex]7[/latex]
- [latex]13[/latex]
- [latex]7[/latex]
- [latex]13[/latex]
- [latex]2[/latex]
- [latex]8[/latex]
- [latex]18[/latex]
- [latex]6[/latex]
- [latex]25[/latex]
- [latex]49[/latex]
- [latex]80[/latex]
- [latex]31[/latex]
- [latex]28[/latex]
- [latex]67[/latex]
- [latex]22[/latex]
- [latex]4[/latex]
- [latex]160[/latex]
- [latex]19[/latex]
- [latex]2[/latex]
- [latex]12[/latex]
- [latex]40[/latex]
- [latex]200[/latex]
- [latex]2[/latex]
- [latex]14[/latex]
- [latex]9\cdot2+30=48[/latex]°F
- [latex](72-30)\div2=21[/latex]°C
0.2 Negative Numbers
- [latex]5[/latex]
- [latex]5[/latex]
- [latex]-15[/latex]
- [latex]-22[/latex]
- [latex]4[/latex]
- [latex]-4[/latex]
- [latex]-9[/latex]
- [latex]9[/latex]
- [latex]18[/latex]°F
- [latex]3[/latex]
- [latex]-200[/latex]
- [latex]3[/latex]
- [latex]-3[/latex]
- [latex]-7[/latex]
- [latex]-7[/latex]
- [latex]7[/latex]
- [latex]7[/latex]
- [latex]3[/latex]
- [latex]-3[/latex]
- [latex]55[/latex]
- [latex]55[/latex]
- [latex]11,123\text{ ft}[/latex]
- [latex]543\text{ ft}[/latex]
- [latex]-12[/latex]
- [latex]-40[/latex]
- [latex]18[/latex]
- [latex]21[/latex]
- [latex]4[/latex]
- [latex]-8[/latex]
- [latex]16[/latex]
- [latex]-32[/latex]
- [latex]-7[/latex]
- [latex]-4[/latex]
- [latex]9[/latex]
- [latex]0[/latex]
- [latex]0[/latex]
- undefined
- [latex]19[/latex]
- [latex]-73[/latex]
- [latex]1[/latex]
- [latex]-6[/latex]
- [latex]-8[/latex]
- [latex]40[/latex]
0.4 Decimals
- [latex]90.23[/latex]
- [latex]7.056[/latex]
- [latex]16.55[/latex]
- [latex]184.015[/latex]
- [latex]8.28[/latex]
- [latex]15.756[/latex]
- [latex]4,147[/latex]
- [latex]414.7[/latex]
- [latex]41.47[/latex]
- [latex]4.147[/latex]
- [latex]65,625[/latex]
- [latex]65.625[/latex]
- [latex]6.5625[/latex]
- [latex]$656.25[/latex]
- [latex]243.5[/latex]
- [latex]2,435[/latex]
- [latex]243,500[/latex]
- [latex]24.35[/latex]
- [latex]6,000[/latex]
- [latex]6,380[/latex]
- [latex]0.71[/latex]
- [latex]0.715[/latex]
- [latex]$3.67[/latex] per month
- [latex]7.5[/latex] miles per hour
0.3 Fractions
- [latex]\frac{11}{30}[/latex]
- [latex]\frac{19}{30}[/latex]
- [latex]\frac{12}{15}[/latex]
- [latex]\frac{8}{12}/[/latex]
- [latex]7[/latex]
- [latex]1[/latex]
- [latex]0[/latex]
- undefined
- [latex]\frac{3}{4}[/latex]
- [latex]\frac{5}{3}[/latex]
- [latex]2[/latex]
- [latex]\frac{1}{2}[/latex]
- [latex]\frac{5}{12}[/latex]
- [latex]1[/latex]
- at least [latex]45[/latex] questions
- [latex]16[/latex]
- [latex]\frac{3}{5}[/latex]
- [latex]6[/latex] scoops
- A requires [latex]\frac{1}{12}[/latex] cup more than B
- [latex]\frac{1}{2}[/latex] of the pizza
- [latex]\frac{2}{3}[/latex] more
- [latex]\frac{5}{8}[/latex] inches combined
- [latex]\frac{1}{8}[/latex] inches difference
- [latex]\frac{7}{12}[/latex] combined
- [latex]\frac{1}{12}[/latex] more
- [latex]2.75[/latex]
- [latex]0.35[/latex]
- [latex]0.\overline5[/latex] or [latex]0.555...[/latex]
- [latex]1.\overline{63}[/latex] or [latex]1.636363...[/latex]
- [latex]11\frac{1}{2}[/latex]
- [latex]4\frac{2}{3}[/latex]
- [latex]\frac{11}{5}[/latex]
- [latex]\frac{20}{3}[/latex]
- [latex]10\frac{3}{8}[/latex]
- [latex]4\frac{7}{8}[/latex]
- [latex]8\frac{1}{6}[/latex]
- [latex]1\frac{5}{6}[/latex] cup
0.5 Precision and Rounding
- exact value
- approximation
- exact value
- approximation
- exact value
- approximation
- three significant figures
- four significant figures
- five significant figures
- two significant figures
- three significant figures
- four significant figures
- two significant figures; the actual value could be anywhere between [latex]28,500[/latex] and [latex]29,500[/latex]
- three significant figures; the actual value could be anywhere between [latex]28,950[/latex] and [latex]29,050[/latex]
- four significant figures; the actual value could be anywhere between [latex]28,995[/latex] and [latex]29,005[/latex]
- five significant figures; the actual value could be anywhere between [latex]28,999.5[/latex] and [latex]29,000.5[/latex]
- [latex]51,800[/latex]
- [latex]51,840[/latex]
- [latex]4.3[/latex]
- [latex]4.28[/latex]
- [latex]14,000[/latex]
- [latex]14,\overline{0}00[/latex]
- [latex]2.6[/latex]
- [latex]2.60[/latex]
- [latex]29,000\text{ ft}[/latex]
- [latex]29,\overline{0}00\text{ ft}[/latex]
- [latex]29,030\text{ ft}[/latex]
- [latex]29,032\text{ ft}[/latex]
- [latex]29,031.7\text{ ft}[/latex]
- [latex]107[/latex]
- [latex]640[/latex]
- [latex]14.4[/latex]
- [latex]12[/latex]
- [latex]$23[/latex]
Exercises
Module 6: Precision and GPE
- thousands
- hundreds
- tens
- thousandths
- ten thousandths
- hundred thousandths
- [latex]82,000[latex]
- [latex]82,\overline{0}00[latex]
- [latex]82,0\overline{0}0[latex]
- [latex]0.6[latex]
- [latex]0.60[latex]
- [latex]0.600[latex]
- [latex]39.3[latex] lb
- [latex]39[latex] lb
- [latex]\textdollar9,800[latex]
- [latex]\textdollar8\overline{0}0[latex]
- thousands place; the nearest [latex]1,000[latex] people
- [latex]\pm 500[latex] people
- hundred thousandths place; the nearest [latex]0.00001[latex] in
- [latex]\pm 0.000005[latex] in
- hundredths place; the nearest [latex]0.01[latex] mil
- [latex]\pm 0.005[latex] mil
- [latex]30\overline{0}[latex] miles
- ones place; the nearest [latex]1[latex] mile
- [latex]\pm 0.5[latex] mi
- ones place; the nearest [latex]1[latex] minute
- [latex]\pm 0.5[latex] min
- two sig figs
- three sig figs
- [latex]55[latex] mi/hr
- When dividing, we must round the result based on the accuracy; i.e., the number of significant figures.
Exercises
Module 7: Formulas
- [latex]\textdollar2.46[latex]
- [latex]\textdollar4.14[latex]
- [latex]\textdollar17.80[latex]
- [latex]\textdollar24.80[latex]
- [latex]\textdollar3.80[latex]
- [latex]6[latex] representatives
- [latex]10[latex] representatives
- [latex]52[latex] representatives
- [latex]8[latex] electoral votes
- [latex]12[latex] electoral votes
- [latex]54[latex] electoral votes
- [latex]\approx115[latex]°F; the official record high in the city was 116°F.
- [latex]37[latex]°C
- [latex]-0.4[latex]°F
- [latex]200[latex]°C
- [latex]90[latex] mm Hg
- around [latex]107[latex] mm Hg
- [latex]70[latex] in
- [latex]74[latex] in
- yes
- no; too large
- no; too small
- yes
Exercises
Module 8: Perimeter and Circumference
- [latex]70[latex] ft
- [latex]58[latex] cm
- [latex]28[latex] cm
- [latex]104[latex] ft
- [latex]130[latex] ft
- [latex]56[latex] ft
- [latex]24[latex] in
- [latex]20[latex] cm
- [latex]28.3[latex] in
- [latex]18.8[latex] cm
- [latex]44.0[latex] ft
- [latex]53[latex] m
- [latex]47\%[/latex]
- [latex]53\%[/latex]
- [latex]\frac{71}{100}[/latex]
- [latex]\frac{1.3}{100}=\frac{13}{1000}[/latex]
- [latex]\frac{0.04}{100}=\frac{1}{2500}[/latex]
- [latex]\frac{106}{100}=\frac{53}{50}[/latex]
- [latex]0.71[/latex]
- [latex]0.013[/latex]
- [latex]0.0004[/latex]
- [latex]1.06[/latex]
- [latex]23\%[/latex]
- [latex]7\%[/latex]
- [latex]8.5\%[/latex]
- [latex]250\%[/latex]
- [latex]28\%[/latex]
- [latex]12.5\%[/latex]
17. [latex]31.5[/latex]
18. [latex]22.5[/latex]
19. [latex]67.5[/latex]
20. [latex]100[/latex]
21. [latex]38.6[/latex]
22. [latex]2.25[/latex]
23. [latex]\textdollar9.35[/latex]
24. [latex]\textdollar119.32[/latex]
Module 12: Percents Part 2 and Error Analysis
- [latex]93\%[latex] or [latex]93.3\%[latex]
- [latex]37.5\%[latex]
- [latex]\textdollar2,500[latex]
- [latex]720[latex]
- [latex]93\%[latex] or [latex]93.3\%[latex]
- [latex]37.5\%[latex]
- [latex]\textdollar2,500[latex]
- [latex]720[latex]
- [latex]44.8\%[latex] or [latex]45\%[latex]
- [latex]50[latex] grams of added sugars is the recommended daily intake for a [latex]2,000[latex] calorie diet.
- [latex]56\%[latex] increase
- [latex]10.1\%[latex] sales tax
- [latex]36\%[latex] decrease
- [latex]2.7\%[latex] decrease
- [latex]0.1875\div25\approx0.75\%[latex]
- [latex]0.13\div10.8\approx1.2\%[latex]
- [latex]4.806[latex] g; [latex]5.194[latex] g
- [latex]3.88\%[latex]
- [latex]5.443[latex] g; [latex]5.897[latex] g
- [latex]4.00\%[latex]
Module 27: Percents Part 3
- [latex]\textdollar1,299.00[latex]
- [latex]14,861[latex] students; notice that if the percent had fewer than five sig figs, we wouldn't have been able to get an answer that was accurate to the nearest whole number.
- Yes, you can! Each bottle cost [latex]\textdollar3.59[latex]. [caption id="attachment_699" align="alignnone" width="250"]
Real time screenshot of my phone's calculator.[/caption]
- [latex]\textdollar3.20[latex] million
- [latex]873,900[latex] people
- [latex]\textdollar16[latex]; the percent has only two sig figs, so it doesn't make sense to assume that the price was [latex]\textdollar16.13[latex]. They probably rounded the percent from [latex]68.75\%[latex] to make the numbers in the advertisement seems less complicated.
8. [latex]\frac{2}{3} \neq \frac{4}{5}[/latex]; false
9. [latex]168 = 168[/latex]; true
10. [latex]200 \neq 240[/latex]; false
11. [latex]70 \neq 60[/latex]; false
12. [latex]20 = 20[/latex]; true
13. [latex]x = 12[/latex]
14. [latex]n = 5[/latex]
15. [latex]k = 4[/latex]
16. [latex]w = 10[/latex]
17. [latex]x = 10.4[/latex]
18. [latex]m = 2.0[/latex]
19. [latex]256[/latex] miles
20. [latex]20[/latex] hours
21. [latex]\approx 50[/latex] miles (rounding to one sig fig seems like a good idea here)
22. [latex]190[/latex] pixels wide
Exercises
Module 13: The US Measurement System
We generally won't worry about significant figures in these answers; we'll probably say "[latex]2[latex] miles" even if "[latex]2.000[latex] miles" is technically correct.
- [latex]54[latex] in
- [latex]54[latex] ft
- [latex]36[latex] in
- [latex]1,760[latex] yd
- [latex]14\frac{2}{3}[latex] ft or [latex]14[latex] ft [latex]8[latex] in
- [latex]15[latex] yd
- [latex]2[latex] mi
- [latex]30[latex] yd
- [latex]40[latex] oz
- [latex]2,400[latex] lb
- 18.75 lb
- [latex]32,000[latex] oz
- [latex]48[latex] fl oz
- [latex]7[latex] pt
- [latex]8[latex] pt
- [latex]5[latex] c
- [latex]1.25[latex] gal
- [latex]64[latex] fl oz
- [latex]3[latex] lb [latex]7[latex] oz
- [latex]7[latex] c [latex]3[latex] fl oz
- [latex]15[latex] ft [latex]2[latex] in
- [latex]4[latex] t [latex]500[latex] lb
- [latex]20[latex] lb or [latex]20[latex] lb [latex]0[latex] oz combined
- [latex]3[latex] lb [latex]2[latex] oz heavier
- [latex]9[latex] ft [latex]1[latex] in combined
- [latex]1[latex] ft [latex]5[latex] in longer
Exercises
Module 14: The Metric System
- [latex]5[latex] m
- [latex]28[latex] cm
- [latex]3.8[latex] km
- [latex]1.6[latex] m
- [latex]160[latex] cm
- [latex]3[latex] mm
- [latex]536[latex] cm
- [latex]5,360[latex] mm
- [latex]1,609[latex] m
- [latex]160,900[latex] cm
- [latex]0.297[latex] m
- [latex]29.7[latex] cm
- [latex]0.828[latex] km
- [latex]82.8[latex] dam
- [latex]100[latex] g
- [latex]80[latex] kg
- [latex]500[latex] mg
- [latex]2,000[latex] kg
- [latex]2,270[latex] g
- [latex]2,270,000[latex] mg
- [latex]6,500[latex] cg
- [latex]65,000[latex] mg
- [latex]0.065[latex] kg
- [latex]9.5[latex] cg
- [latex]0.095[latex] g
- [latex]50[latex] L
- [latex]30[latex] mL
- [latex]0.5[latex] L
- [latex]10.5[latex] dL
- [latex]1,750[latex] mL
- [latex]0.25[latex] L
- they are equal in size
- about [latex]11[latex] to [latex]1[latex]
- [latex]4[latex] bottles; this is easier if you know that a 500-milliliter bottle of Mexican Coke is called a medio litro. [caption id="attachment_758" align="alignnone" width="300"]
Doce litros de Coca-Cola[/caption]
1.3 Converting Length or Distance
- [latex]31\text{ mi}[/latex]
- [latex]183\text{ cm}[/latex]
- [latex]164.0\text{ ft}[/latex]
- yes, [latex]4\text{ in}=101.6\text{ mm}[/latex] according to the conversion, but is it really [latex]4.000\text{ in}[/latex] to begin with? Rounding the result to [latex]100\text{ mm}[/latex] or [latex]102\text{ mm}[/latex] seems reasonable.
- [latex]20[/latex] in converts to around [latex]50.8[/latex] cm, and [latex]50.0[/latex] cm converts to around [latex]19.7[/latex] in. It looks like somebody used the conversion [latex]1\text{ in}=2.5\text{ cm}[/latex], which is fine if you're estimating but not if you're going to report a number to three sig figs.
- not exactly but they're pretty close; the error is around [latex]0.3\%[/latex].
1.6 Converting Rates
We will generally round these answers to three significant figures; your answer may be slightly different depending on which conversion ratio you used.
- [latex]525,600[/latex] min; if you're familiar with the musical Rent, then you already knew the answer.
- this is roughly [latex]31.7[/latex] years, which is indeed possible
- [latex]37.6[/latex] km/hr
- [latex]23.3[/latex] mi/hr
- [latex]1,770[/latex] mi/hr
- [latex]29.5[/latex] mi in [latex]1[/latex] min
- [latex]20.3[/latex] min
- [latex]0.17[/latex] mi/gal
- [latex]5.8[/latex] gal/mi
- [latex]171[/latex] gal in [latex]1[/latex] min
Exercises
Module 17: Angles
- right angle
- obtuse angle
- reflexive angle
- straight angle
- acute angle
- [latex]a=127^\circ[latex]; [latex]b=53^\circ[latex]; [latex]c=127^\circ[latex]
- [latex]27^\circ[latex]
- [latex]97^\circ[latex]
- [latex]23^\circ[latex] each
- [latex]45^\circ[latex] each
- [latex]60^\circ[latex] each
- [latex]A=61^\circ[latex]; [latex]B=80^\circ[latex]; [latex]C=39^\circ[latex]
- [latex]18.9111^\circ[latex]
- [latex]155.6808^\circ[latex]
- [latex]34.1924^\circ[latex]
- [latex]29^\circ58'30''[latex]
- [latex]31^\circ8'15''[latex]
- [latex]76^\circ20'48.1''[latex]
Module 18: Triangles
- right isosceles triangle
- obtuse scalene triangle
- acute equilateral triangle (yes, an equilateral triangle will always be acute)
- [latex]w=35\text{ ft}[latex]
- [latex]x=8\text{ cm}[latex]; [latex]y=10.5\text{ cm}[latex]
- [latex]d=268\text{ ft}[latex]
- [latex]n=55\text{ cm}[latex]
- this is a right triangle, because [latex]5^2+12^2=13^2[latex].
- this is not a right triangle, because [latex]8^2+17^2\neq19^2[latex].
- [latex]7.07[latex]
- [latex]17.20[latex]
- [latex]30.71[latex]
- [latex]10\text{ ft}[latex]
- [latex]15\text{ ft}[latex]
- [latex]12.3\text{ cm}[latex]
- [latex]1.8\text{ cm}[latex]
Exercises
Module 19: Area of Polygons and Circles
We may occasionally include extra sig figs in these answers so you can be sure that your answer matches ours.
- [latex]20\text{ cm}^2[latex]
- [latex]16\text{ cm}^2[latex]
- [latex]4.86\text{ m}^2[latex]
- [latex]12.25\text{ ft}^2[latex]
- [latex]120\text{ in}^2[latex]
- [latex]360\text{ m}^2[latex]
- [latex]210\text{ ft}^2[latex]
- [latex]126\text{ cm}^2[latex]
- [latex]38.5\text{ cm}^2[latex]
- [latex]204\text{ ft}^2[latex]
- [latex]2,160\text{ in}^2[latex]
- [latex]36\text{ m}^2[latex]
- [latex]124\text{ cm}^2[latex]
- [latex]192\text{ cm}^2[latex]
- [latex]28.3\text{ cm}^2[latex]
- [latex]220\text{ m}^2[latex]
- [latex]154\text{ ft}^2[latex]
- [latex]63.6\text{ in}^2[latex]
Exercises
Module 20: Composite Figures
- [latex]64\text{ ft}[latex]
- [latex]189\text{ ft}^2[latex]
- [latex]590\text{ cm}^2[latex]; the area of the rectangle is [latex]800\text{ cm}^2[latex] and the areas of the triangles are [latex]70\text{ cm}^2[latex] and [latex]140\text{ cm}^2[latex].
- [latex]590\text{ cm}^2[latex]; hey, that's what we got for #3!
- [latex]148\text{ m}[latex]
- [latex]940\text{ m}^2[latex]
- Based on the stated measurements, the distance around the track will be 401 meters, which appears to be 1 meter too long. In real life, precision would be very important here, and you might ask for the measurements to be given to the nearest tenth of a meter.
- around [latex]9,620\text{ m}^2[latex]
- [latex]1,960\text{ cm}^2[latex]
- [latex]178.5\text{ cm}[latex]
- [latex]29\text{ ft}^2[latex]
- [latex]47\text{ ft}[latex]
- around [latex]21.5\%[latex] (Hint: Make up an easy number for the side of the square, like 2 or 10.)
- around [latex]36.3\%[latex] (Hint: The diagonals of the square are equal to the circle's diameter.)
1.4 Converting Area
- [latex]162\text{ ft}^2[/latex]
- [latex]162\text{ ft}^2[/latex]
- [latex]7\text{ ft}^2[/latex]
- [latex]7\text{ ft}^2[/latex]
- [latex]7,776\text{ in}^2[/latex]
- [latex]8.3\text{ ac}[/latex]
- [latex]180,000\text{ cm}^2[/latex]
- [latex]180,000\text{ cm}^2[/latex]
- [latex]623.7\text{ cm}^2[/latex]
- [latex]623.7\text{ cm}^2[/latex]
- [latex]6\text{ m}^2[/latex]
- [latex]4\text{ ha}[/latex]
- [latex]376\text{ km}^2[/latex]
- [latex]2,\overline{0}00\text{ ha}[/latex], rounded to two sig figs
- [latex]603\text{ cm}^2[/latex]
- [latex]75,300\text{ ft}^2/[latex], rounded to three sig figs
Exercises
Module 22: Surface Area of Common Solids
- [latex]36\text{ cm}^2[latex]
- [latex]76\text{ cm}^2[latex]
- [latex]471\text{ cm}^2[latex]
- [latex]628\text{ cm}^2[latex]
- [latex]616\text{ cm}^2[latex]
- [latex]380\text{ in}^2[latex]
Exercises
Module 23: Area of Regular Polygons
All answers have been given to two or three significant figures.
- [latex]6,900\text{ in}^2[latex]
- [latex]94\text{ cm}^2[latex]
- [latex]750\text{ in}^2[latex]
- [latex]751\text{ mm}^2[latex]
- [latex]480\text{ cm}^2[latex]
- [latex]110\text{ m}^2[latex]
- [latex]280\text{ mm}^2[latex] (the area of the circle [latex]\approx1,660\text{ mm}^2[latex] and the area of the hexagon is [latex]1,380\text{ mm}^2[latex])
Exercises
Module 24: Volume of Common Solids
- [latex]40\text{ cm}^3[latex]
- [latex]531\text{ cm}^3[latex]
- [latex]45\text{ cm}^3[latex]
- [latex]350\text{ cm}^3[latex]
- [latex]520\text{ cm}^3[latex]
- [latex]22,600\text{ ft}^3[latex]
- [latex]3.7\text{ mm}^3[latex]
- [latex]1,440\text{ cm}^3[latex]
- [latex]697\text{ in}^3[latex] or [latex]7\overline{0}0\text{ in}^3[latex]
- [latex]22.7\text{ cm}^3[latex] (the cylinder's volume [latex]\approx14.1\text{ cm}^3[latex] and the hemisphere's volume [latex]\approx8.6\text{ cm}^3[latex].)
- [latex]37.6\text{ ft}^3[latex] (the cylinder's volume [latex]\approx29.45\text{ ft}^3[latex] and the two hemispheres' combined volume [latex]\approx8.18\text{ ft}^3[latex])
- [latex]37.6\text{ ft}^3\approx282\text{ gal}[latex], which is more than [latex]250\text{ gal}[latex].
1.5 Converting Volume
- the result is very close to [latex]1[/latex] cubic yard: [latex](112\text{ in}\cdot14\text{ in}\cdot10\text{ in})\cdot3\text{ crates}=47,040\text{ in}^3\approx1.01\text{ yd}^3[/latex]
- this estimate is also [latex]1[/latex] cubic yard: [latex](9\text{ ft}\cdot1\text{ ft}\cdot1\text{ ft})\cdot3\text{ crates}=27\text{ ft}^3=1\text{ yd}^3[/latex]
- around [latex]60[/latex] gallons
- yes, the can is able to hold [latex]12[/latex] fluid ounces; the can's volume is roughly [latex]23.3\text{ in}^3\approx12.9\text{ fl oz}[/latex].
- [latex]5[/latex] gallons
- around [latex]2,300[/latex] to [latex]2,400[/latex] liters; a calculator says [latex]2,356[/latex] liters which should technically be rounded up to [latex]2,400[/latex] liters, but it would be reasonable to round down to [latex]2,300[/latex] liters instead if you considered the volume of the benches and the fact that the sides might slope inwards near to bottom of the tub.
- the rectangular section of the carton has a volume of [latex]1.7[/latex] liters, which is larger than the required [latex]1.5\text{ L}[/latex].
- [latex]\approx21\text{ cm}[/latex] high
Independent verification from my kitchen. - [latex]19.6\text{ yd}^3[/latex]
- [latex]53\overline{0}\text{ ft}^3[/latex]
- [latex]1.53\text{ m}^3[/latex]
- [latex]327\text{ in}^3[/latex]
- [latex]5,350\text{ cm}^3[/latex]
Exercises
Module 26: Pyramids and Cones
- [latex][/latex]1,280\text{ cm}^3[latex][/latex]
- [latex][/latex]2,420,000\text{ m}^3[latex][/latex]
- [latex][/latex]544\text{ cm}^2[latex][/latex]; [latex][/latex]80\overline{0}\text{ cm}^2[latex][/latex]
- [latex][/latex]82,300\text{ m}^2[latex][/latex]
- [latex][/latex]310\text{ cm}^3[latex][/latex] (if we had greater accuracy, the result would be 314.16 because it's 100 times [latex][/latex]\pi[latex][/latex].)
- [latex][/latex]38\text{ ft}^3[latex][/latex]
- [latex][/latex]47\text{ ft}^2[latex][/latex]; [latex][/latex]75\text{ ft}^2[latex][/latex]
- [latex][/latex]2\overline{0}0\text{ cm}^2[latex][/latex]; [latex][/latex]280\text{ cm}^2[latex][/latex]
Exercises
Module 28: Mean, Median, Mode
- [latex][/latex]10.3\text{ min}[latex][/latex]
- [latex][/latex]\textdollar4.488[latex][/latex]
- [latex][/latex]11.0\text{ min}[latex][/latex] (because it is the seventh value in the list of thirteen)
- [latex][/latex]\textdollar4.475[latex][/latex]
- [latex][/latex]\textdollar256,000[latex][/latex]
- [latex][/latex]\textdollar250,000[latex][/latex]
- [latex][/latex]\textdollar338,000[latex][/latex]
- [latex][/latex]\textdollar275,000[latex][/latex]
- the median is more representative because the mean is higher than five of the six home values.
- [latex][/latex]11.0\text{ min}[latex][/latex] (because it appears four times in the list)
- no mode (there are no repeated values)
- AT&T Mobility
- Samoas and Thin Mints
- [latex][/latex]12.2[latex][/latex] games
- [latex][/latex]12[latex][/latex] games
- [latex][/latex]12[latex][/latex] games
- they all represent the data fairly well; [latex][/latex]12[latex][/latex] wins represents a typical Patriots season.
- [latex][/latex]6.8[latex][/latex] games
- [latex][/latex]7[latex][/latex] games
- [latex][/latex]6[latex][/latex] games
- they all represent the data fairly well; [latex][/latex]6[latex][/latex] or [latex][/latex]7[latex][/latex] wins represents a typical Bills season.
- [latex][/latex]98.2[latex][/latex] grams; the mean doesn't seem to represent a typical clementine because there is a group of smaller ones (from [latex][/latex]82[latex][/latex] to [latex][/latex]94[latex][/latex] grams) and a group of larger ones (from [latex][/latex]102[latex][/latex] to [latex][/latex]109[latex][/latex] grams) with none in the middle.
- [latex][/latex]94[latex][/latex] grams; for the same reason, the median doesn't represent a typical clementine, but you could say it helps split the clementines into a lighter group and a heavier group.
- no mode; too many values appear twice.
- [latex][/latex]98.3[latex][/latex] grams; this is a small increase over the previous mean.
- [latex][/latex]94[latex][/latex] grams; the median does not change when one of the highest numbers increases.
- [latex][/latex]109[latex][/latex] grams; you might say it represents the mass of a typical large clementine, but it doesn't represent the entire group.
Exercises
Module 30: Standard Deviation
- [latex][/latex]60.5[latex][/latex]; [latex][/latex]66.5[latex][/latex]
- [latex][/latex]57.5[latex][/latex]; [latex][/latex]69.5[latex][/latex]
- [latex][/latex]54.5[latex][/latex]; [latex][/latex]72.5[latex][/latex]
- [latex][/latex]66.5[latex][/latex]; [latex][/latex]72.5[latex][/latex]
- [latex][/latex]63.5[latex][/latex]; [latex][/latex]75.5[latex][/latex]
- [latex][/latex]60.5[latex][/latex]; [latex][/latex]78.5[latex][/latex]
- [latex][/latex]68\%[latex][/latex] because [latex][/latex]100\%-(16\%+16\%)=68\%[latex][/latex]
- [latex][/latex]195[latex][/latex] lb because this is halfway between [latex][/latex]160[latex][/latex] and [latex][/latex]230[latex][/latex] lb
- [latex][/latex]35[latex][/latex] lb because [latex][/latex]195-35[latex][/latex] lb and [latex][/latex]195+35[latex][/latex] lb encompasses [latex][/latex]68\%[latex][/latex] of the data
- [latex][/latex]125[latex][/latex]; [latex][/latex]265[latex][/latex]
- [latex][/latex]8.8[latex][/latex]; [latex][/latex]15.6[latex][/latex]
- You would not have predicted this from the data because it is more than two standard deviations below the mean, so there would be a roughly [latex][/latex]2.5\%[latex][/latex] chance of this happening randomly. In fact, [latex][/latex](12.2-7)\div1.7[latex][/latex] is slightly larger than [latex][/latex]3[latex][/latex], so this is more than three standard deviations below the mean, making it even more unlikely. (You might have predicted that the Patriots would get worse when Tom Brady left them for Tampa Bay, but you wouldn't have predicted only [latex][/latex]7[latex][/latex] wins based on the previous nineteen years of data.)
- [latex][/latex]3.4[latex][/latex]; [latex][/latex]10.2[latex][/latex]
- You would not predict this from the data because it is more than two standard deviations above the mean, so there would be a roughly [latex][/latex]2.5\%[latex][/latex] chance of this happening randomly. In fact, [latex][/latex](13-6.8)\div1.7\approx3.6[latex][/latex], so this is more than three standard deviations above the mean, making it even more unlikely. This increased win total is partly due to external forces (i.e., the Patriots becoming weaker and losing two games to the Bills) but even [latex][/latex]11[latex][/latex] wins would have been a bold prediction, let alone [latex][/latex]13[latex][/latex].
- [latex][/latex]3.9[latex][/latex]; [latex][/latex]14.3[latex][/latex]
- The trouble with making predictions about the Broncos is that their standard deviation is so large. You could choose any number between [latex][/latex]4[latex][/latex] and [latex][/latex]14[latex][/latex] wins and be within the [latex][/latex]95\%[latex][/latex] interval. [latex][/latex](9.1-5)\div2.6\approx1.6[latex][/latex], so this is around [latex][/latex]1.6[latex][/latex] standard deviations below the mean, which makes it not very unusual. Whereas the Patriots and Bills are more consistent, the Broncos' win totals fluctuate quite a bit and are therefore more unpredictable.
Exercises
Module 31: Right Triangle Trigonometry
- the adjacent side is e, the opposite side is f, and the hypotenuse is d.
- the adjacent side is x, the opposite side is y, and the hypotenuse is r.
- [latex][/latex]\frac{3}{5}=0.6[latex][/latex]
- [latex][/latex]\frac{4}{5}=0.8[latex][/latex]
- [latex][/latex]\frac{3}{4}=0.75[latex][/latex]
- [latex][/latex]\frac{4}{5}=0.8[latex][/latex]
- [latex][/latex]\frac{3}{5}=0.6[latex][/latex]
- [latex][/latex]\frac{4}{3}\approx1.333[latex][/latex]
- [latex][/latex]0.6000[latex][/latex]
- [latex][/latex]0.8000[latex][/latex]
- [latex][/latex]0.7500[latex][/latex]
- [latex][/latex]0.8000[latex][/latex]
- [latex][/latex]0.6000[latex][/latex]
- [latex][/latex]1.333[latex][/latex]
- [latex][/latex]z\approx4.6\text{ cm}[latex][/latex]
- [latex][/latex]g\approx2.6\text{ cm}[latex][/latex]
- [latex][/latex]b\approx5.706\text{ in}[latex][/latex]
- [latex][/latex]p\approx75.51\text{ mm}[latex][/latex]
- [latex][/latex]y\approx136.18\text{ mm}[latex][/latex]
- [latex][/latex]d\approx296.87\text{ mm}[latex][/latex]
- the wire is approximately [latex][/latex]27\text{ ft}[latex][/latex] long
- [latex][/latex]\approx17.85\text{ ft}[latex][/latex], which is roughly [latex][/latex]17\text{ ft}, 10\text{ in}[latex][/latex]
- No; [latex][/latex]64\cdot\text{tan }1^\circ\approx1.1\text{ ft}[latex][/latex], so the puck will hit the fabric over 1 foot away from the center of the hole. (The person in the photo was given a bunch of pucks and 30 seconds to score, but he scored on his first shot. Boston Bruins at Vancouver Canucks, February 24, 2024.)
- [latex][/latex]36.87^\circ[latex][/latex]
- [latex][/latex]60^\circ[latex][/latex]
- [latex][/latex]53.13^\circ[latex][/latex]
- [latex][/latex]\angle A\approx36.47^\circ[latex][/latex]
- [latex][/latex]\angle1\approx42.03^\circ[latex][/latex]
- [latex][/latex]\angle1\approx30.76^\circ[latex][/latex]
- [latex][/latex]\angle y\approx52.88^\circ[latex][/latex]
- [latex][/latex]\angle1\approx55.28^\circ[latex][/latex]
- [latex][/latex]\angle x\approx31.50^\circ[latex][/latex]; [latex][/latex]\angle y\approx58.50^\circ[latex][/latex]
- [latex][/latex]\text{tan}^{-1}\left(\frac{4}{1}\right)\approx76^\circ[latex][/latex] angle of elevation
- Yes; [latex][/latex]\text{sin}^{-1}\left(\frac{2}{25}\right)\approx4.59^\circ[latex][/latex], which is less than [latex][/latex]4.75^\circ[latex][/latex].
- [latex][/latex]\text{tan}^{-1}\left(\frac{17}{14}\right)\approx50.5^\circ[latex][/latex]
- [latex][/latex]17\div\text{sin }51^\circ\approx22.0[latex][/latex]
- [latex][/latex]14\div\text{cos }51^\circ\approx22.0[latex][/latex]
- [latex][/latex]\sqrt{14^2+17^2}\approx22.0[latex][/latex]
- All three answers are the same rounded to three significant figures. This is true because we rounded [latex][/latex]\angle A[latex][/latex] to the nearest tenth; if we had rounded it to [latex][/latex]51^\circ[latex][/latex] instead of [latex][/latex]50.5^\circ[latex][/latex], we would have decreased the accuracy of #36 & #37 to only two sig figs and the three results all would have been slightly different.
- [latex][/latex]\approx23^\circ[latex][/latex]
- [latex][/latex]\approx8,900\text{ ft}[latex][/latex]
Exercises
Module 32: Slope
- [latex][/latex]0.36\text:12[latex][/latex], [latex][/latex]0.03[latex][/latex], [latex][/latex]3\%[latex][/latex]
- [latex][/latex]0.60\text:12[latex][/latex], [latex][/latex]0.05[latex][/latex], [latex][/latex]5\%[latex][/latex]
- [latex][/latex]1.00\text:12[latex][/latex], [latex][/latex]0.0833[latex][/latex], [latex][/latex]8.33\%[latex][/latex]
- [latex][/latex]2.16\text:12[latex][/latex], [latex][/latex]0.18[latex][/latex], [latex][/latex]18\%[latex][/latex]
- [latex][/latex]1.72^\circ[latex][/latex]
- [latex][/latex]2.86^\circ[latex][/latex]
- [latex][/latex]4.76^\circ[latex][/latex]
- [latex][/latex]10.20^\circ[latex][/latex]
- [latex][/latex]0.5\text{ ft}[latex][/latex]
- [latex][/latex]1\text{ ft}[latex][/latex]
- [latex][/latex]5\text{ ft}[latex][/latex]
- [latex][/latex]\text{tan}^{-1}\left(20/12\right)\approx59^\circ[latex][/latex] from vertical. (this would be an angle of depression of [latex][/latex]31^\circ[latex][/latex].)
- [latex][/latex]30\text{ ft}[latex][/latex]; the proportion [latex][/latex]\frac{1}{12}=\frac{2.5}{x}[latex][/latex] gives a result of exactly [latex][/latex]30\text{ ft}[latex][/latex].
Using the result from #7, the equation [latex][/latex]\text{tan}\left(4.76^\circ\right)=\frac{2.5}{x}[latex][/latex] gives a result very close to [latex][/latex]30.0\text{ ft}[latex][/latex].