Lipids are a family of organic compounds that are mostly insoluble in water, meaning they do not mix well with water. There are three main types of lipids: triglycerides, phospholipids, and sterols. On this page, we’ll learn about the structures of these three types of lipids, as well as their functions in the body and where you can find them in foods.
Triglycerides
Triglycerides are the main form of lipids in the body and in foods. More than 95 percent of lipids in the diet are in the form of triglycerides, some having a visible presence and some hidden in foods. Concentrated fats (butter and vegetable oil, for example) and marbling of fat in meat are obviously visible. But fat can also be hidden in foods, as in baked goods, dairy products like milk and cheese, and fried foods. Naturally occurring triglycerides are found in many foods, including avocados, olives, corn, and nuts. We commonly call the triglycerides in our food “fats” and “oils.” Fats are lipids that are solid at room temperature, whereas oils are liquid. The terms fats, oils, and triglycerides are often used interchangeably. In this unit, when we use the word fat, we are referring to triglycerides.
Figure 5.5. 95% of fats in the diet are in the form of triglycerides. Sterols (like cholesterol) make up about 3% of dietary fat intake and phospholipids make up roughly 2% of dietary fat intake.
The structure of a triglyceride is made up of glycerol and three fatty acids. Glycerol is the three-carbon backbone of triglycerides, while fatty acids are longer chains of carbon molecules attached to the glycerol backbone. The “glyceride” in the word “triglyceride” refers to this glycerol backbone, while the “tri” refers to the fact that there are three fatty acids attached. Fatty acids are called acids because they have an acid group (−COOH) on one end of a carbon chain. A monoglyceride contains glycerol with one fatty acid attached, and a diglyceride contains glycerol with two fatty acids attached.
Figure 5.6. The chemical structure of a triglyceride, showing the glycerol backbone and three attached fatty acids.
Figure 5.7. The structure of a triglyceride is often depicted as a simplified drawing of the glycerol backbone and three fatty acids.
There are different types of fatty acids, and triglycerides can contain a mixture of them. Fatty acids are classified by their carbon chain length and degree of saturation. Foods contain different proportions of fatty acid types, and this influences disease risks associated with dietary patterns. We will take a closer look at these differences, along with food sources, in the next section.
Phospholipids
Phospholipids are found in both plants and animals but make up only about 2 percent of dietary lipids. However, they play many important roles in the body and in foods. Phospholipids can also be synthesized by the body, so they don’t have to be consumed in the diet.
Phospholipids are similar in structure to triglycerides (Figure 5.8). Like triglycerides, phospholipids have a glycerol backbone. But unlike triglycerides, phospholipids only have two fatty acid molecules attached to the glycerol backbone, while the third carbon of the glycerol backbone is bonded to a phosphate group—a chemical group that contains the mineral phosphorus.
Figure. 5.8. The structural difference between a triglyceride (on the left) and a phospholipid (on the right) is in the third carbon position, where the phospholipid contains a phosphate group instead of a fatty acid.
The unique structure of phospholipids makes them both fat- and water-soluble, or amphiphilic. The fatty-acids are hydrophobic (dislike water), and the phosphate group and glycerol are hydrophilic (attracted to water).
Figure 5.9. A phospholipid molecule consists of a polar phosphate “head,” which is hydrophilic, and a non-polar lipid “tail,” which is hydrophobic.
The amphiphilic nature of phospholipids makes them very useful for several functions in the body. Every cell in the body is encased in a membrane composed primarily of a double layer of phospholipids (also known as the phospholipid bilayer), which protects the inside of the cell from the outside environment while at the same time allowing for transport of fat and water through the membrane. Phospholipids also play a role in transporting fats in the blood, as we’ll learn later in this unit.
Figure 5.10. The phospholipid bilayer consists of two adjacent sheets of phospholipids, arranged tail to tail. The hydrophobic tails associate with one another, forming the interior of the membrane. The polar heads contact the fluid inside and outside of the cell.
Another important role of phospholipids is to act as emulsifiers. Emulsions are mixtures of two liquids that do not normally mix (oil and water, for example). Without an emulsifier, the oil and water separate out into two layers. Because of their ability to mix with both water and fat, phospholipids are ideal emulsifiers that can keep oil and water mixed, dispersing tiny oil droplets throughout the water. Lecithin—a phospholipid found in egg yolk, soybean, and wheat germ—is often used as a food emulsifier. Emulsifiers also play an important role in making food appetizing; their inclusion in foods like sauces and creams makes for a smoother texture and prevents the oil and water ingredients from separating out. They also can extend shelf life.
VIDEO: “What are Emulsions?,” by FuseSchool – Global Education, YouTube (May 26, 2013), 3:07 minutes. In this video, learn about emulsions, how they are made, and where you can find them in foods.
Sterols
Sterols have a very different structure from triglycerides and phospholipids. Most sterols do not contain any fatty acids but rather are multi-ring structures, similar to chicken wire. They are complex molecules that contain interlinking rings of carbon atoms, with side chains of carbon, hydrogen, and oxygen attached.
Cholesterol is the best-known sterol because of its role in heart disease. It forms a large part of the fatty plaques that narrow arteries and obstruct blood flow in atherosclerosis. However, cholesterol also has many essential functions in the body. Like phospholipids, cholesterol is present in all body cells as it is an important substance in cell membrane structure. Cholesterol is also used in the body as a precursor in the synthesis of a number of important substances, including vitamin D, bile, and sex hormones such as progesterone, testosterone, and estrogens.
Figure 5.11. Cholesterol is made up of multiple carbon rings bonded together.
Cholesterol is not an essential nutrient; it does not need to be consumed in the diet, because it is manufactured in the liver. Only foods that come from animal sources contain cholesterol. Cholesterol is found in foods like meat, poultry, fish, egg yolks, butter, and dairy products made from whole milk.
Plant foods do not contain cholesterol, but sterols found in plants resemble cholesterol in structure. Plant sterols inhibit cholesterol absorption in the human body, which can contribute to lower cholesterol levels, particularly lower LDL (“bad”) cholesterol levels. Plant sterols occur naturally in vegetable oils, nuts, seeds, and whole grains. In addition, some foods like margarines and dressings are fortified with plant sterols.
Self-Check:
Attributions:
- Lindshield, B. L. Kansas State University Human Nutrition (FNDH 400) Flexbook. goo.gl/vOAnR, CC BY-NC-SA 4.0
- University of Hawai‘i at Mānoa Food Science and Human Nutrition Program, “Digestion and Absorption of Lipids,” CC BY-NC 4.0
Image Credits:
- Figure 5.5. “Types of Fat” by Allison Calabrese is licensed under CC BY 4.0
- Figure 5.6. “The Structure of a Triglyceride” by Allison Calabrese is licensed under CC BY 4.0
- Figure 5.7. “Simple Triglyceride Diagram” by Alice Calahan is licensed under CC BY-SA 4.0
- Figure 5.8. “The Difference Between Triglycerides and Phospholipids” by Allison Calabrese is licensed under CC BY 4.0
- Figure 5.9. “Phospholipid Structure” by J. Gordon Betts, Kelly A. Young, James A. Wise, Eddie Johnson, Brandon Poe, Dean H. Kruse, Oksana Korol, Jody E. Johnson, Mark Womble, Peter DeSaix is licensed under CC BY 4.0
- Figure 5.10. “Phospolipid Bilayer” by J. Gordon Betts, Kelly A. Young, James A. Wise, Eddie Johnson, Brandon Poe, Dean H. Kruse, Oksana Korol, Jody E. Johnson, Mark Womble, Peter DeSaix is licensed under CC BY 4.0
- Figure 5.11. “Cholesterol Chemical Structure” by Wesalius is in the Public Domain
Lipid digestion and absorption pose some special challenges. Triglycerides are large molecules, and unlike carbohydrates and proteins, they’re not water-soluble. Because of this, they like to cluster together in large droplets when they’re in a watery environment like the digestive tract. The digestive process has to break those large droplets of fat into smaller droplets and then enzymatically digest lipid molecules using enzymes called lipases. The mouth and stomach play a small role in this process, but most enzymatic digestion of lipids happens in the small intestine. From there, the products of lipid digestion are absorbed into circulation and transported around the body, which again requires some special handling since lipids are not water-soluble and do not mix with the watery blood.
Let’s start at the beginning to learn more about the path of lipids through the digestive tract.
1. Lipid Digestion in the Mouth
A few things happen in the mouth that start the process of lipid digestion. Chewing mechanically breaks food into smaller particles and mixes them with saliva. An enzyme called lingual lipase is produced by cells on the tongue (“lingual” means relating to the tongue) and begins some enzymatic digestion of triglycerides, cleaving individual fatty acids from the glycerol backbone.
2. Lipid Digestion in the Stomach
In the stomach, mixing and churning helps to disperse food particles and fat molecules. Cells in the stomach produce another lipase, called gastric lipase (“gastric” means relating to the stomach) that also contributes to enzymatic digestion of triglycerides. Lingual lipase swallowed with food and saliva also remains active in the stomach. But together, these two lipases play only a minor role in fat digestion (except in the case of infants, as explained below), and most enzymatic digestion happens in the small intestine.
Figure 5.21. Overview of lipid digestion in the human gastrointestinal tract.
3. Lipid Digestion in the Small Intestine
As the stomach contents enter the small intestine, most of the dietary lipids are undigested and clustered in large droplets. Bile, which is made in the liver and stored in the gallbladder, is released into the duodenum, the first section of the small intestine. Bile salts have both a hydrophobic and a hydrophilic side, so they are attracted to both fats and water. This makes them effective emulsifiers, meaning that they break large fat globules into smaller droplets. Emulsification makes lipids more accessible to digestive enzymes by increasing the surface area for them to act (see Fig. 5.22 below).
The pancreas secretes pancreatic lipases into the small intestine to enzymatically digest triglycerides. Triglycerides are broken down to fatty acids, monoglycerides (glycerol backbone with one fatty acid still attached), and some free glycerol. Cholesterol and fat-soluble vitamins do not need to be enzymatically digested (see Fig. 5.22 below).
4. Lipid Absorption from the Small Intestine
Next, those products of fat digestion (fatty acids, monoglycerides, glycerol, cholesterol, and fat-soluble vitamins) need to enter into the circulation so that they can be used by cells around the body. Again, bile helps with this process. Bile salts cluster around the products of fat digestion to form structures called micelles, which help the fats get close enough to the microvilli of intestinal cells so that they can be absorbed. The products of fat digestion diffuse across the membrane of the intestinal cells, and bile salts are recycled back to do more work emulsifying fat and forming micelles.
Figure 5.22. Lipid digestion and absorption in the small intestine.
Once inside the intestinal cell, short- and medium-chain fatty acids and glycerol can be directly absorbed into the bloodstream, but larger lipids such as long-chain fatty acids, monoglycerides, fat-soluble vitamins, and cholesterol need help with absorption and transport to the bloodstream. Long-chain fatty acids and monoglycerides reassemble into triglycerides within the intestinal cell, and along with cholesterol and fat-soluble vitamins, are then incorporated into transport vehicles called chylomicrons. Chylomicrons are large structures with a core of triglycerides and cholesterol and an outer membrane made up of phospholipids, interspersed with proteins (called apolipoproteins) and cholesterol. This outer membrane makes them water-soluble so that they can travel in the aqueous environment of the body. Chylomicrons from the small intestine travel first into lymph vessels, which then deliver them to the bloodstream.
Chylomicrons are one type of lipoprotein—transport vehicles for lipids in blood and lymph. We’ll learn more about other types of lipoproteins on the next page.
Figure 5.23. Structure of a chylomicron. Cholesterol is not shown in this figure, but chylomicrons contain cholesterol in both the lipid core and embedded on the surface of the structure.
VIDEO: “Lipids—Digestion and Absorption,” by Alice Callahan, YouTube (November, 17, 2019), 8:49 minutes.
Special Adaptations for Lipid Digestion in Infants
Lipids are an important part of an infant’s diet. Breast milk contains about 4 percent fat, similar to whole cow’s milk. Whether breastfed or formula-fed, fat provides about half of an infant’s calories, and it serves an important role in brain development. Yet, infants are born with low levels of bile and pancreatic enzyme secretion, which are essential contributors to lipid digestion in older children and adults. So, how do babies digest all of the fat in their diet?
Infants have a few special adaptations that allow them to digest fat effectively. First, they have plenty of lingual and gastric lipases right from birth. These enzymes play a much more important role in infants than they do in adults. Second, breast milk actually contains lipase enzymes that are activated in the baby’s small intestine. In other words, the mother makes lipases and sends them in breast milk to help her baby digest the milk fats. Amazing, right? Between increased activity of lingual and gastric lipases and the lipases contained in breast milk, young infants can efficiently digest fat and reap its nutritional value for growth and brain development. Studies show that fat digestion is more efficient in premature infants fed breast milk compared with those fed formula. Even pasteurized breast milk, as is used when breast milk is donated for feeding babies in the hospital, is a little harder to digest, because heat denatures the lipases. (Infants can still digest pasteurized breast milk and formula; they're just less efficient at doing so and absorb less of the products of triglyceride digestion.)1
Self-Check:
References:
- Lindshield, B. L. Kansas State University Human Nutrition (FNDH 400) Flexbook. goo.gl/vOAnR
- OpenStax, Anatomy and Physiology. OpenStax CNX. Aug 28, 2019 http://cnx.org/contents/14fb4ad7-39a1-4eee-ab6e-3ef2482e3e22@16.7.
- University of Hawai‘i at Mānoa Food Science and Human Nutrition Program, "Digestion and Absorption of Lipids,” CC BY-NC 4.0
- 1American Academy of Pediatrics Committee on Nutrition, 2014. Chapter 2: Development of Gastrointestinal Function. In: Kleinman RE, Greer FR, eds. Pediatric Nutrition. 7th ed. Elk Grove Village, IL: American Academy of Pediatrics.
Image Credits:
- "all eating ice cream" by salem elizabeth is licensed under CC BY 2.0
- Figure 5.21. “Overview of lipid digestion” by Alice Callahan is licensed under CC BY 4.0; edited from "Digestive system diagram edit" by Mariana Ruiz, edited by Joaquim Alves Gaspar, Jmarchn is in the Public Domain
- Figure 5.22. “Lipid digestion and absorption in the small intestine” by Alice Callahan is licensed under CC BY 4.0; edited from "Lipid Absorption" by OpenStax is licensed under CC BY 4.0
- Figure 5.23. "Chylomicrons Contain Triglycerides Cholesterol Molecules and Other Lipids" by OpenStax College, Anatomy & Physiology, Connexions Web site is licensed under CC BY 3.0
- "IMGP1686" (breastfeeding baby) by Celeste Burke is licensed under CC BY 2.0