"

12.4-Substance Use and Abuse

Understanding Drug Use and Addiction

Many people don’t understand why or how other people become addicted to drugs. They may mistakenly think that those who use drugs lack moral principles or willpower and that they could stop their drug use simply by choosing to. In reality, drug addiction is a complex disease, and quitting usually takes more than good intentions or a strong will. Drugs change the brain in ways that make quitting hard, even for those who want to. Fortunately, researchers know more than ever about how drugs affect the brain and have found treatments that can help people recover from drug addiction and lead productive lives.

What Is drug addiction?

Addiction is a chronic disease characterized by drug seeking and use that is compulsive, or difficult to control, despite harmful consequences. The initial decision to take drugs is voluntary for most people, but repeated drug use can lead to brain changes that challenge an addicted person’s self-control and interfere with their ability to resist intense urges to take drugs. These brain changes can be persistent, which is why drug addiction is considered a “relapsing” disease—people in recovery from drug use disorders are at increased risk for returning to drug use even after years of not taking the drug.

It’s common for a person to relapse, but relapse doesn’t mean that treatment doesn’t work. As with other chronic health conditions, treatment should be ongoing and should be adjusted based on how the patient responds. Treatment plans need to be reviewed often and modified to fit the patient’s changing needs.

What happens to the brain when a person takes drugs?Image of the brain's reward circuit.

Most drugs affect the brain’s “reward circuit” by flooding it with the chemical messenger dopamine. This reward system controls the body’s ability to feel pleasure and motivates a person to repeat behaviors needed to thrive, such as eating and spending time with loved ones. This overstimulation of the reward circuit causes the intensely pleasurable “high” that can lead people to take a drug again and again.

As a person continues to use drugs, the brain adjusts to the excess dopamine by making less of it and/or reducing the ability of cells in the reward circuit to respond to it. This reduces the high that the person feels compared to the high they felt when first taking the drug—an effect known as tolerance. They might take more of the drug, trying to achieve the same dopamine high. It can also cause them to get less pleasure from other things they once enjoyed, like food or social activities.

Long-term use also causes changes in other brain chemical systems and circuits as well, affecting functions that include:

  • learning
  • judgment
  • decision-making
  • stress
  • memory
  • behavior

Despite being aware of these harmful outcomes, many people who use drugs continue to take them, which is the nature of addiction.

Why do some people become addicted to drugs while others don’t?

No one factor can predict if a person will become addicted to drugs. A combination of factors influences risk for addiction. The more risk factors a person has, the greater the chance that taking drugs can lead to addiction. For example:

  • Biology. The genes that people are born with account for about half of a person’s risk for addiction. Gender, ethnicity, and the presence of other mental disorders may also influence risk for drug use and addiction.
  • Environment. A person’s environment includes many different influences, from family and friends to economic status and general quality of life. Factors such as peer pressure, physical and sexual abuse, early exposure to drugs, stress, and parental guidance can greatly affect a person’s likelihood of drug use and addiction.
  • Development. Genetic and environmental factors interact with critical developmental stages in a person’s life to affect addiction risk. Although taking drugs at any age can lead to addiction, the earlier that drug use begins, the more likely it will progress to addiction. This is particularly problematic for teens. Because areas in their brains that control decision-making, judgment, and self-control are still developing, teens may be especially prone to risky behaviors, including trying drugs.

Can drug addiction be cured or prevented?

As with most other chronic diseases, such as diabetes, asthma, or heart disease, treatment for drug addiction generally isn’t a cure. However, addiction is treatable and can be successfully managed. People who are recovering from an addiction will be at risk for relapse for years and possibly for their whole lives. Research shows that combining addiction treatment medicines with behavioral therapy ensures the best chance of success for most patients. Treatment approaches tailored to each patient’s drug use patterns and any co-occurring medical, mental, and social problems can lead to continued recovery.

More good news is that drug use and addiction are preventable. Results from NIDA-funded research have shown that prevention programs involving families, schools, communities, and the media are effective for preventing or reducing drug use and addiction. Although personal events and cultural factors affect drug use trends, when young people view drug use as harmful, they tend to decrease their drug taking. Therefore, education and outreach are key in helping people understand the possible risks of drug use. Teachers, parents, and health care providers have crucial roles in educating young people and preventing drug use and addiction.

Points to Remember

  • Drug addiction is a chronic disease characterized by drug seeking and use that is compulsive, or difficult to control, despite harmful consequences.
  • Brain changes that occur over time with drug use challenge an addicted person’s self-control and interfere with their ability to resist intense urges to take drugs. This is why drug addiction is also a relapsing disease.
  • Relapse is the return to drug use after an attempt to stop. Relapse indicates the need for more or different treatment.
  • Most drugs affect the brain’s reward circuit by flooding it with the chemical messenger dopamine. This overstimulation of the reward circuit causes the intensely pleasurable “high” that leads people to take a drug again and again.
  • Over time, the brain adjusts to the excess dopamine, which reduces the high that the person feels compared to the high they felt when first taking the drug—an effect known as tolerance. They might take more of the drug, trying to achieve the same dopamine high.
  • No single factor can predict whether a person will become addicted to drugs. A combination of genetic, environmental, and developmental factors influences risk for addiction. The more risk factors a person has, the greater the chance that taking drugs can lead to addiction.
  • Drug addiction is treatable and can be successfully managed.
  • More good news is that drug use and addiction are preventable. Teachers, parents, and health care providers have crucial roles in educating young people and preventing drug use and addiction.

 

Disease Prevention and Healthy Lifestyles by Lumen Learning is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Learning Objectives

By the end of this section, you will be able to:

  • Describe the diagnostic criteria for substance use disorders
  • Identify the neurotransmitter systems impacted by various categories of drugs
  • Describe how different categories of drugs affect behavior and experience

While we all experience altered states of consciousness in the form of sleep on a regular basis, some people use drugs and other substances that result in altered states of consciousness as well. This section will present information relating to the use of various psychoactive drugs and problems associated with such use. This will be followed by brief descriptions of the effects of some of the more well-known drugs commonly used today.

Substance Use Disorders

The fifth edition of the Diagnostic and Statistical Manual of Mental DisordersFifth Edition (DSM-5) is used by clinicians to diagnose individuals suffering from various psychological disorders. Drug use disorders are addictive disorders, and the criteria for specific substance (drug) use disorders are described in DSM-5. A person who has a substance use disorder often uses more of the substance than they originally intended to and continues to use that substance despite experiencing significant adverse consequences. In individuals diagnosed with a substance use disorder, there is a compulsive pattern of drug use that is often associated with both physical and psychological dependence.

Physical dependence involves changes in normal bodily functions—the user will experience withdrawal from the drug upon cessation of use. In contrast, a person who has psychological dependence has an emotional, rather than physical, need for the drug and may use the drug to relieve psychological distress. Tolerance is linked to physiological dependence, and it occurs when a person requires more and more drug to achieve effects previously experienced at lower doses. Tolerance can cause the user to increase the amount of drug used to a dangerous level—even to the point of overdose and death.

Drug withdrawal includes a variety of negative symptoms experienced when drug use is discontinued. These symptoms usually are opposite of the effects of the drug. For example, withdrawal from sedative drugs often produces unpleasant arousal and agitation. In addition to withdrawal, many individuals who are diagnosed with substance use disorders will also develop tolerance to these substances. Psychological dependence, or drug craving, is a recent addition to the diagnostic criteria for substance use disorder in DSM-5. This is an important factor because we can develop tolerance and experience withdrawal from any number of drugs that we do not abuse. In other words, physical dependence in and of itself is of limited utility in determining whether or not someone has a substance use disorder.

Drug Categories

The effects of all psychoactive drugs occur through their interactions with our endogenous neurotransmitter systems. Many of these drugs, and their relationships, are shown in Figure 4.16. As you have learned, drugs can act as agonists or antagonists of a given neurotransmitter system. An agonist facilitates the activity of a neurotransmitter system, and antagonists impede neurotransmitter activity.

Four main drug categories are identified by differently colored circles showing overlaps: the four main drug categories are “antipsychotics,” “stimulants,” “depressants,” and “hallucinogens.” The circle titled “Antipsychotics” includes the drug names “Haldol,” “Risperdal,” and “Seroquel.” The circle titled “Stimulants” contains a subcircle titled “Psychmotor stimulants” with the drug names “Amphetamines,” “Khat,” “Ritalin,” and “Cocaine.” The “Stimulants” circle contains another subcircle titled “Methylxanthines” with the drug names “Caffeine,” “Theophylline,” and “Theobromine.” The circle titled “Depressants” contains a subcircle titled “Sedative Hypnotics” with the drug names “Alcohol,” “Barbituates,” “Ether,” and “GHB”; within that circle is a subcircle titled “Minor tranquilizers” with the drug names “Ativan,” “Valium,” and “Xanax.” “Nicotine” falls in the overlap between the “Stimulants” and “Depressants” circles. The circle titled “Depressants” also contains a subcircle titled “Narcotic Analgesics” with the drug names “Opium,” “Codeine,” “Morphine,” “Heroin,” and “DXM.” “DXM” falls in the overlap between the “Depressants” circle and the “Dissociatives” subcircle of the “Hallucinogens” circle. The circle titled “Hallucinogens” contains a subcircle labeled “Dissociatives” including the drug names ”Ketamine,” “PCP,” “Nitrous,” “Amanitas,” and “Salvinorum.” Within that subcircle, “Ketamine,” “PCP,” and “Nitrous” overlap with with the “depressants” circle The circle titled “Hallucinogens” also contains a subcircle titled “Psychadelics” including the drug names “MDMA,” “Mescaline,” “LSD,” “Psilocybin,” “AMT,” “DMT,” and “Ibogaine.” Within that subcircle, “MDMA,” “Mescaline,” “LSD,” “Psilocybin,” and “AMT” fall within the overlap between the “Hallucinogens” and “Stimulants” circles. “Ibogaine” falls within the overlap between the “Psychadelics” and “Dissociatives” subcircles. Outside of all subcircles, “Marijuana” falls within the overlap between the “Stimulants,” “Depressants,” and “Hallucinogens” circles.
Figure 4.16 This figure illustrates various drug categories and overlap among them. (credit: modification of work by Derrick Snider)

Alcohol and Other Depressants

Ethanol, which we commonly refer to as alcohol, is in a class of psychoactive drugs known as depressants (Figure 4.17). A depressant is a drug that tends to suppress central nervous system activity. Other depressants include barbiturates and benzodiazepines. These drugs share in common their ability to serve as agonists of the gamma-Aminobutyric acid (GABA) neurotransmitter system. Because GABA has a quieting effect on the brain, GABA agonists also have a quieting effect; these types of drugs are often prescribed to treat both anxiety and insomnia.

An illustration of a GABA-gated chloride channel in a cell membrane shows receptor sites for barbiturate, benzodiazepine, GABA, alcohol, and neurosteroids, as well as three negatively-charged chloride ions passing through the channel. Each drug type has a specific shape, such as triangular, rectangular or square, which corresponds to a similarly shaped receptor spot.
Figure 4.17 The GABA-gated chloride (Cl-) channel is embedded in the cell membrane of certain neurons. The channel has multiple receptor sites where alcohol, barbiturates, and benzodiazepines bind to exert their effects. The binding of these molecules opens the chloride channel, allowing negatively-charged chloride ions (Cl-) into the neuron’s cell body. Changing its charge in a negative direction pushes the neuron away from firing; thus, activating a GABA neuron has a quieting effect on the brain.

Acute alcohol administration results in a variety of changes to consciousness. At rather low doses, alcohol use is associated with feelings of euphoria. As the dose increases, people report feeling sedated. Generally, alcohol is associated with decreases in reaction time and visual acuity, lowered levels of alertness, and reduction in behavioral control. With excessive alcohol use, a person might experience a complete loss of consciousness and/or difficulty remembering events that occurred during a period of intoxication (McKim & Hancock, 2013). In addition, if a pregnant woman consumes alcohol, her infant may be born with a cluster of birth defects and symptoms collectively called fetal alcohol spectrum disorder (FASD) or fetal alcohol syndrome (FAS).

With repeated use of many central nervous system depressants, such as alcohol, a person becomes physically dependent upon the substance and will exhibit signs of both tolerance and withdrawal. Psychological dependence on these drugs is also possible. Therefore, the abuse potential of central nervous system depressants is relatively high.

Drug withdrawal is usually an aversive experience, and it can be a life-threatening process in individuals who have a long history of very high doses of alcohol and/or barbiturates. This is of such concern that people who are trying to overcome addiction to these substances should only do so under medical supervision.

Stimulants

Stimulants are drugs that tend to increase overall levels of neural activity. Many of these drugs act as agonists of the dopamine neurotransmitter system. Dopamine activity is often associated with reward and craving; therefore, drugs that affect dopamine neurotransmission often have abuse liability. Drugs in this category include cocaine, amphetamines (including methamphetamine), cathinones (i.e., bath salts), MDMA (ecstasy), nicotine, and caffeine.

Cocaine can be taken in multiple ways. While many users snort cocaine, intravenous injection and ingestion are also common. The freebase version of cocaine, known as crack, is a potent, smokable version of the drug. Like many other stimulants, cocaine agonizes the dopamine neurotransmitter system by blocking the reuptake of dopamine in the neuronal synapse.

DIG DEEPER

Crack Cocaine

Crack (Figure 4.18) is often considered to be more addictive than cocaine itself because it is smokable and reaches the brain very quickly. Crack is often less expensive than other forms of cocaine; therefore, it tends to be a more accessible drug for individuals from impoverished segments of society. During the 1980s, many drug laws were rewritten to punish crack users more severely than cocaine users. This led to discriminatory sentencing with low-income, inner-city minority populations receiving the harshest punishments. The wisdom of these laws has recently been called into question, especially given research that suggests crack may not be more addictive than other forms of cocaine, as previously thought (Haasen & Krausz, 2001; Reinerman, 2007).

A photograph shows crack rocks. A ruler indicates that each crack rock is approximately 1–2 inches wide.
Figure 4.18 Crack rocks like these are smoked to achieve a high. Compared with other routes of administration, smoking a drug allows it to enter the brain more rapidly, which can often enhance the user’s experience. (credit: modification of work by U.S. Department of Justice)

Amphetamines have a mechanism of action quite similar to cocaine in that they block the reuptake of dopamine in addition to stimulating its release (Figure 4.19). While amphetamines are often abused, they are also commonly prescribed to children diagnosed with attention deficit hyperactivity disorder (ADHD). It may seem counterintuitive that stimulant medications are prescribed to treat a disorder that involves hyperactivity, but the therapeutic effect comes from increases in neurotransmitter activity within certain areas of the brain associated with impulse control.

An illustration of a presynaptic cell and a postsynaptic cell shows these cells’ interactions with cocaine and dopamine molecules. The presynaptic cell contains two cylinder-shaped channels, one on each side near where it faces the postsynaptic cell. The postsynaptic cell contains several receptors, side-by-side across the area that faces the presynaptic cell. In the space between the two cells, there are both cocaine and dopamine molecules. One of the cocaine molecules attaches to one of the presynaptic cell’s channels. This cocaine molecule is labeled “bound cocaine.” An X-shape is shown over the top of the bound cocaine and the channel to indicate that the cocaine does not enter the presynaptic cell. A dopamine molecule is shown inside of the presynaptic cell’s other channel. Arrows connect this dopamine molecule to several others inside of the presynaptic cell. More arrows connect to more dopamine molecules, tracing their paths from the channel into the presynaptic cell, and out into the space between the presynaptic cell and the postsynaptic cell. Arrows extend from two of the dopamine molecules in this in-between space to the postsynaptic cell’s receptors. Only the dopamine molecules are shown binding to the postsynaptic cell’s receptors.
Figure 4.19 As one of their mechanisms of action, cocaine and amphetamines block the reuptake of dopamine from the synapse into the presynaptic cell.

In recent years, methamphetamine (meth) use has become increasingly widespread. Methamphetamine is a type of amphetamine that can be made from ingredients that are readily available (e.g., medications containing pseudoephedrine, a compound found in many over-the-counter cold and flu remedies). Despite recent changes in laws designed to make obtaining pseudoephedrine more difficult, methamphetamine continues to be an easily accessible and relatively inexpensive drug option (Shukla, Crump, & Chrisco, 2012).

The cocaine, amphetamine, cathinones, and MDMA users seek a euphoric high, feelings of intense elation and pleasure, especially in those users who take the drug via intravenous injection or smoking. Repeated use of these stimulants can have significant adverse consequences. Users can experience physical symptoms that include nausea, elevated blood pressure, and increased heart rate. In addition, these drugs can cause feelings of anxiety, hallucinations, and paranoia (Fiorentini et al., 2011). Normal brain functioning is altered after repeated use of these drugs. For example, repeated use can lead to overall depletion among the monoamine neurotransmitters (dopamine, norepinephrine, and serotonin). People may engage in compulsive use of these stimulant substances in part to try to reestablish normal levels of these neurotransmitters (Jayanthi & Ramamoorthy, 2005; Rothman, Blough, & Baumann, 2007).

Caffeine is another stimulant drug. While it is probably the most commonly used drug in the world, the potency of this particular drug pales in comparison to the other stimulant drugs described in this section. Generally, people use caffeine to maintain increased levels of alertness and arousal. Caffeine is found in many common medicines (such as weight loss drugs), beverages, foods, and even cosmetics (Herman & Herman, 2013). While caffeine may have some indirect effects on dopamine neurotransmission, its primary mechanism of action involves antagonizing adenosine activity (Porkka-Heiskanen, 2011).

While caffeine is generally considered a relatively safe drug, high blood levels of caffeine can result in insomnia, agitation, muscle twitching, nausea, irregular heartbeat, and even death (Reissig, Strain, & Griffiths, 2009; Wolt, Ganetsky, & Babu, 2012). In 2012, Kromann and Nielson reported on a case study of a 40-year-old woman who suffered significant ill effects from her use of caffeine. The woman used caffeine in the past to boost her mood and to provide energy, but over the course of several years, she increased her caffeine consumption to the point that she was consuming three liters of soda each day. Although she had been taking a prescription antidepressant, her symptoms of depression continued to worsen and she began to suffer physically, displaying significant warning signs of cardiovascular disease and diabetes. Upon admission to an outpatient clinic for treatment of mood disorders, she met all of the diagnostic criteria for substance dependence and was advised to dramatically limit her caffeine intake. Once she was able to limit her use to less than 12 ounces of soda a day, both her mental and physical health gradually improved. Despite the prevalence of caffeine use and the large number of people who confess to suffering from caffeine addiction, this was the first published description of soda dependence appearing in scientific literature.

Nicotine is highly addictive, and the use of tobacco products is associated with increased risks of heart disease, stroke, and a variety of cancers. Nicotine exerts its effects through its interaction with acetylcholine receptors. Acetylcholine functions as a neurotransmitter in motor neurons. In the central nervous system, it plays a role in arousal and reward mechanisms. Nicotine is most commonly used in the form of tobacco products like cigarettes or chewing tobacco; therefore, there is a tremendous interest in developing effective smoking cessation techniques. To date, people have used a variety of nicotine replacement therapies in addition to various psychotherapeutic options in an attempt to discontinue their use of tobacco products. In general, smoking cessation programs may be effective in the short term, but it is unclear whether these effects persist (Cropley, Theadom, Pravettoni, & Webb, 2008; Levitt, Shaw, Wong, & Kaczorowski, 2007; Smedslund, Fisher, Boles, & Lichtenstein, 2004).

Opioids

An opioid is one of a category of drugs that includes heroin, morphine, methadone, and codeine. Opioids have analgesic properties; that is, they decrease pain. Humans have an endogenous opioid neurotransmitter system—the body makes small quantities of opioid compounds that bind to opioid receptors reducing pain and producing euphoria. Thus, opioid drugs, which mimic this endogenous painkilling mechanism, have an extremely high potential for abuse. Natural opioids, called opiates, are derivatives of opium, which is a naturally occurring compound found in the poppy plant. There are now several synthetic versions of opiate drugs (correctly called opioids) that have very potent painkilling effects, and they are often abused. For example, the National Institutes of Drug Abuse has sponsored research that suggests the misuse and abuse of the prescription pain killers hydrocodone and oxycodone are significant public health concerns (Maxwell, 2006). In 2013, the U.S. Food and Drug Administration recommended tighter controls on their medical use.

Historically, heroin has been a major opioid drug of abuse (Figure 4.20). Heroin can be snorted, smoked, or injected intravenously. Like the stimulants described earlier, the use of heroin is associated with an initial feeling of euphoria followed by periods of agitation. Because heroin is often administered via intravenous injection, users often bear needle track marks on their arms and, like all abusers of intravenous drugs, have an increased risk for contraction of both tuberculosis and HIV.

Photograph A shows various paraphernalia spread out on a black surface. The items include a tourniquet, three syringes of varying widths, three cotton-balls, a tiny cooking vessel, a condom, a capsule of sterile water, and an alcohol swab. Photograph B shows a hand holding a spoon containing heroin tar above a small candle.
Figure 4.20 (a) Common paraphernalia for heroin preparation and use are shown here in a needle exchange kit. (b) Heroin is cooked on a spoon over a candle. (credit a: modification of work by Todd Huffman)

Aside from their utility as analgesic drugs, opioid-like compounds are often found in cough suppressants, anti-nausea, and anti-diarrhea medications. Given that withdrawal from a drug often involves an experience opposite to the effect of the drug, it should be no surprise that opioid withdrawal resembles a severe case of the flu. While opioid withdrawal can be extremely unpleasant, it is not life-threatening (Julien, 2005). Still, people experiencing opioid withdrawal may be given methadone to make withdrawal from the drug less difficult. Methadone is a synthetic opioid that is less euphorigenic than heroin and similar drugs. Methadone clinics help people who previously struggled with opioid addiction manage withdrawal symptoms through the use of methadone. Other drugs, including the opioid buprenorphine, have also been used to alleviate symptoms of opiate withdrawal.

Codeine is an opioid with relatively low potency. It is often prescribed for minor pain, and it is available over-the-counter in some other countries. Like all opioids, codeine does have abuse potential. In fact, abuse of prescription opioid medications is becoming a major concern worldwide (Aquina, Marques-Baptista, Bridgeman, & Merlin, 2009; Casati, Sedefov, & Pfeiffer-Gerschel, 2012).

Hallucinogens

hallucinogen is one of a class of drugs that results in profound alterations in sensory and perceptual experiences (Figure 4.21). In some cases, users experience vivid visual hallucinations. It is also common for these types of drugs to cause hallucinations of body sensations (e.g., feeling as if you are a giant) and a skewed perception of the passage of time.

An illustration shows a colorful spiral pattern.
Figure 4.21 Psychedelic images like this are often associated with hallucinogenic compounds. (credit: modification of work by “new 1lluminati”/Flickr)

As a group, hallucinogens are incredibly varied in terms of the neurotransmitter systems they affect. Mescaline and LSD are serotonin agonists, and PCP (angel dust) and ketamine (an animal anesthetic) act as antagonists of the NMDA glutamate receptor. In general, these drugs are not thought to possess the same sort of abuse potential as other classes of drugs discussed in this section.

DIG DEEPER

Medical Marijuana

While the possession and use of marijuana is illegal in most states, it is now legal in Washington and Colorado to possess limited quantities of marijuana for recreational use (Figure 4.22). In contrast, medical marijuana use is now legal in nearly half of the United States and in the District of Columbia. Medical marijuana is marijuana that is prescribed by a doctor for the treatment of a health condition. For example, people who undergo chemotherapy will often be prescribed marijuana to stimulate their appetites and prevent excessive weight loss resulting from the side effects of chemotherapy treatment. Marijuana may also have some promise in the treatment of a variety of medical conditions (Mather, Rauwendaal, Moxham-Hall, & Wodak, 2013; Robson, 2014; Schicho & Storr, 2014).

A photograph shows a window with a neon sign. The sign includes the word “medical” above the shape of a marijuana leaf.
Figure 4.22 Medical marijuana shops are becoming more and more common in the United States. (credit: Laurie Avocado)

While medical marijuana laws have been passed on a state-by-state basis, federal laws still classify this as an illicit substance, making conducting research on the potentially beneficial medicinal uses of marijuana problematic. There is quite a bit of controversy within the scientific community as to the extent to which marijuana might have medicinal benefits due to a lack of large-scale, controlled research (Bostwick, 2012). As a result, many scientists have urged the federal government to allow for relaxation of current marijuana laws and classifications in order to facilitate a more widespread study of the drug’s effects (Aggarwal et al., 2009; Bostwick, 2012; Kogan & Mechoulam, 2007).

Until recently, the United States Department of Justice routinely arrested people involved and seized marijuana used in medicinal settings. In the latter part of 2013, however, the United States Department of Justice issued statements indicating that they would not continue to challenge state medical marijuana laws. This shift in policy may be in response to the scientific community’s recommendations and/or reflect changing public opinion regarding marijuana.

Health Effects of Drug Abuse

In addition to the effects various drugs of abuse may have on specific organs of the body, many drugs produce global body changes such as dramatic changes in appetite and increases in body temperature, which may impact a variety of health conditions. Withdrawal from drug use also may lead to numerous adverse health effects, including restlessness, mood swings, fatigue, changes in appetite, muscle and bone pain, insomnia, cold flashes, diarrhea, and vomiting.

Marijuana

Marijuana is made from the hemp plant, Cannabis sativa. The main psychoactive (mind-altering) chemical in marijuana is delta-9-tetrahydrocannabinol, or THC.

Possible Health Effects
Short-term Enhanced sensory perception and euphoria followed by drowsiness/relaxation; slowed reaction time; problems with balance and coordination; increased heart rate and appetite; problems with learning and memory; hallucinations; anxiety; panic attacks; psychosis.
Long-term Mental health problems, chronic cough, frequent respiratory infections.
Other Health-related Issues Youth: possible loss of IQ points when repeated use begins in adolescence.

Pregnancy: babies born with problems involving attention, memory, and problem solving.

Click here for additional details regarding marijuana use.

Cocaine

A powerfully addictive stimulant drug made from the leaves of the coca plant native to South America.

Possible Health Effects
Short-term Narrowed blood vessels; enlarged pupils; increased body temperature, heart rate, and blood pressure; headache; abdominal pain and nausea; euphoria; increased energy, alertness; insomnia, restlessness; anxiety; erratic and violent behavior, panic attacks, paranoia, psychosis; heart rhythm problems, heart attack; stroke, seizure, coma.
Long-term Loss of sense of smell, nosebleeds, nasal damage and trouble swallowing from snorting; infection and death of bowel tissue from decreased blood flow; poor nutrition and weight loss from decreased appetite.
Other Health-related Issues Pregnancy: premature delivery, low birth weight, smaller head circumference.

Risk of HIV, hepatitis, and other infectious diseases from shared needles.

Click here to learn more about cocaine.

Methamphetamine

An extremely addictive stimulant amphetamine drug.

Possible Health Effects
Short-term Increased wakefulness and physical activity; decreased appetite; increased breathing, heart rate, blood pressure, temperature; irregular heartbeat.
Long-term Anxiety, confusion, insomnia, mood problems, violent behavior, paranoia, hallucinations, delusions, weight loss, severe dental problems (“meth mouth”), intense itching leading to skin sores from scratching.
Other Health-related Issues Pregnancy: premature delivery; separation of the placenta from the uterus; low birth weight; lethargy; heart and brain problems.

Risk of HIV, hepatitis, and other infectious diseases from shared needles.

To learn more about methamphetamine, click here.

CNS Depressants

CNS depressants slow down brain activity and can cause sleepiness and loss of coordination. Continued use can lead to physical dependence and withdrawal symptoms if use is stopped.

Possible Health Effects
Short-term Drowsiness, slurred speech, poor concentration, confusion, dizziness, problems with movement and memory, lowered blood pressure, slowed breathing.
Long-term Physical dependence, withdrawal, possibility of seizures from rebound effect.
Other Health-related Issues Sleep medications are sometimes used as date rape drugs (e.g. Rohypnol).

Risk of HIV, hepatitis, and other infectious diseases from shared needles.

In Combination with Alcohol Further slows heart rate and breathing, which can lead to death.

Click here to find out more about the misuse of prescription drugs.

Prescription Opioids

Pain relievers with an origin similar to that of heroin. Opioids can cause euphoria and are often used nonmedically, leading to overdose deaths.

Possible Health Effects
Short-term Pain relief, drowsiness, nausea, constipation, euphoria, confusion, slowed breathing, death.
Long-term Physical dependence, possible brain damage.
Other Health-related Issues Pregnancy: Miscarriage, low birth weight, neonatal abstinence syndrome.

Older adults: higher risk of accidental misuse or abuse because many older adults have multiple prescriptions, increasing the risk of drug-drug interactions, and breakdown of drugs slows with age; also, many older adults are treated with prescription medications for pain.

Risk of HIV, hepatitis, and other infectious diseases from shared needles.

In Combination with Alcohol Dangerous slowing of heart rate and breathing leading to coma or death.

Heroin

Possible Health Effects
Short-term Euphoria; warm flushing of skin; dry mouth; heavy feeling in the hands and feet; clouded thinking; alternate wakeful and drowsy states; itching; nausea; vomiting; slowed breathing and heart rate.
Long-term Collapsed veins; abscesses (swollen tissue with pus); infection of the lining and valves in the heart; constipation and stomach cramps; liver or kidney disease; pneumonia.
Other Health-related Issues Pregnancy: miscarriage, low birth weight, neonatal abstinence syndrome.

Risk of HIV, hepatitis, and other infectious diseases from shared needles.

In Combination with Alcohol Dangerous slowdown of heart rate and breathing, coma, death.

Click here to learn more about heroin and opioid abuse.

License

Icon for the Creative Commons Attribution-NonCommercial 4.0 International License

LWTECH Infectious and Chronic Diseases of Public Health Importance Copyright © by Lake Washington Institute of Technology is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, except where otherwise noted.