8.3 Seed Plants: Gymnosperms

Learning Objectives

By the end of this section, you will be able to:

  • Discuss the type of seeds produced by gymnosperms, as well as other characteristics of gymnosperms
  • List the four groups of modern-day gymnosperms and provide examples of each

The first plants to colonize land were most likely closely related to modern-day mosses (bryophytes) and are thought to have appeared about 500 million years ago. They were followed by liverworts (also bryophytes) and primitive vascular plants, the pterophytes, from which modern ferns are derived. The life cycle of bryophytes and pterophytes is characterized by the alternation of generations. The completion of the life cycle requires water, as the male gametes must swim to the female gametes. The male gametophyte releases sperm, which must swim—propelled by their flagella—to reach and fertilize the female gamete or egg. After fertilization, the zygote matures and grows into a sporophyte, which in turn will form sporangia, or “spore vessels,” in which mother cells undergo meiosis and produce haploid spores. The release of spores in a suitable environment will lead to germination and a new generation of gametophytes.

The Evolution of Seed Plants

In seed plants, the evolutionary trend led to a dominant sporophyte generation, in which the larger and more ecologically significant generation for a species is the diploid plant. At the same time, the trend led to a reduction in the size of the gametophyte, from a conspicuous structure to a microscopic cluster of cells enclosed in the tissues of the sporophyte. Lower vascular plants, such as club mosses and ferns, are mostly homosporous (produce only one type of spore). In contrast, all seed plants, or spermatophytes, are heterosporous, forming two types of spores: megaspores (female) and microspores (male). Megaspores develop into female gametophytes that produce eggs, and microspores mature into male gametophytes that generate sperm. Because the gametophytes mature within the spores, they are not free-living, as are the gametophytes of other seedless vascular plants. Heterosporous seedless plants are seen as the evolutionary forerunners of seed plants.

Seeds and pollen—two adaptations to drought—distinguish seed plants from other (seedless) vascular plants. Both adaptations were critical to the colonization of land. Fossils place the earliest distinct seed plants at about 350 million years ago. Gymnosperms are heterosporous seed plants that produce naked seeds. The earliest reliable record of gymnosperms dates their appearance to the Carboniferous period (359–299 million years ago). Gymnosperms were preceded by the progymnosperms (“first naked seed plants”). This was a transitional group of plants that superficially resembled conifers (“cone bearers”) because they produced wood from the secondary growth of the vascular tissues; however, they still reproduced like ferns, releasing spores to the environment. In the Mesozoic era (251–65.5 million years ago), gymnosperms dominated the landscape. Angiosperms took over by the middle of the Cretaceous period (145.5–65.5 million years ago) in the late Mesozoic era, and have since become the most abundant plant group in most terrestrial biomes.

The two innovative structures of pollen and seed allowed seed plants to break their dependence on water for reproduction and development of the embryo, and to conquer dry land. The pollen grains carry the male gametes of the plant. The small haploid (1n) cells are encased in a protective coat that prevents desiccation (drying out) and mechanical damage. Pollen can travel far from the sporophyte that bore it, spreading the plant’s genes and avoiding competition with other plants. The seed offers the embryo protection, nourishment and a mechanism to maintain dormancy for tens or even thousands of years, allowing it to survive in a harsh environment and ensuring germination when growth conditions are optimal. Seeds allow plants to disperse the next generation through both space and time. With such evolutionary advantages, seed plants have become the most successful and familiar group of plants.

Gymnosperms

Gymnosperms (“naked seed”) are a diverse group of seed plants and are paraphyletic. Paraphyletic groups do not include descendants of a single common ancestor. Gymnosperm characteristics include naked seeds, separate female and male gametes, pollination by wind, and tracheids, which transport water and solutes in the vascular system.

Diversity of Gymnosperms

Modern gymnosperms are classified into four major divisions and comprise about 1,000 described species. Coniferophyta, Cycadophyta, and Ginkgophyta are similar in their production of secondary cambium (cells that generate the vascular system of the trunk or stem) and their pattern of seed development, but are not closely related phylogenetically to each other. Gnetophyta are considered the closest group to angiosperms because they produce true xylem tissue that contains both tracheids and vessel elements.

Conifers

Conifers are the dominant phylum of gymnosperms, with the most variety of species. Most are tall trees that usually bear scale-like or needle-like leaves. The thin shape of the needles and their waxy cuticle limits water loss through transpiration. Snow slides easily off needle-shaped leaves, keeping the load light and decreasing breaking of branches. These adaptations to cold and dry weather explain the predominance of conifers at high altitudes and in cold climates. Conifers include familiar evergreen trees, such as pines, spruces, firs, cedars, sequoias, and yews. A few species are deciduous and lose their leaves all at once in fall. The European larch and the tamarack are examples of deciduous conifers. Many coniferous trees are harvested for paper pulp and timber. The wood of conifers is more primitive than the wood of angiosperms; it contains tracheids, but no vessel elements, and is referred to as “soft wood.”

Photo A shows a tall spruce tree covered in pine cones. Photo B shows a sequoia with a tall, broad trunk and branches starting high up the trunk. Photo C shows a juniper tree with a gnarled trunk. Part D shows a forest of tamarack with yellow needles.
Figure 8.15 Conifers are the dominant form of vegetation in cold or arid environments and at high altitudes. Shown here are the (a) evergreen spruce, (b) sequoia, (c) juniper, and (d) a deciduous gymnosperm: the tamarack Larix larcinia. Notice the yellow leaves of the tamarack. (credit b: modification of work by Alan Levine; credit c: modification of work by Wendy McCormac; credit d: modification of work by Micky Zlimen)

Cycads

Cycads thrive in mild climates and are often mistaken for palms because of the shape of their large, compound leaves. They bear large cones, and unusually for gymnosperms, may be pollinated by beetles, rather than wind. They dominated the landscape during the age of dinosaurs in the Mesozoic era (251–65.5 million years ago). Only a hundred or so cycad species persisted to modern times. They face possible extinction, and several species are protected through international conventions. Because of their attractive shape, they are often used as ornamental plants in gardens.

Photo shows a cycad with leaves resembling those of a palm tree. The compound leaves radiate out from a central trunk. Two large orange cones are in the center.
Figure 8.16 This Encephalartos ferox cycad exhibits large cones. (credit: Wendy Cutler)

 

Gingkophytes

The single surviving species of ginkgophyte is the Ginkgo biloba. Its fan-shaped leaves, unique among seed plants because they feature a dichotomous venation pattern, turn yellow in autumn and fall from the plant. For centuries, Buddhist monks cultivated Ginkgo biloba, ensuring its preservation. It is planted in public spaces because it is unusually resistant to pollution. Male and female organs are found on separate plants. Usually, only male trees are planted by gardeners because the seeds produced by the female plant have an off-putting smell of rancid butter.

Illustration shows the green, fan-shaped leaves of Ginkgo biloba.
Figure 8.17 This plate from the 1870 book Flora Japonica, Sectio Prima (Tafelband) depicts the leaves and fruit of Gingko biloba, as drawn by Philipp Franz von Siebold and Joseph Gerhard Zuccarini.

Gnetophytes

Gnetophytes are the closest relatives to modern angiosperms, and include three dissimilar genera of plants. Like angiosperms, they have broad leaves. Gnetum species are mostly vines in tropical and subtropical zones. The single species of Welwitschia is an unusual, low-growing plant found in the deserts of Namibia and Angola. It may live for up to 2000 years. The genus Ephedra is represented in North America in dry areas of the southwestern United States and Mexico. Ephedra’s small, scale-like leaves are the source of the compound ephedrine, which is used in medicine as a potent decongestant. Because ephedrine is similar to amphetamines, both in chemical structure and neurological effects, its use is restricted to prescription drugs. Like angiosperms, but unlike other gymnosperms, all gnetophytes possess vessel elements in their xylem.

Photo shows Mormon tea, a short, scrubby plant with yellow branches radiating out from a central bundle.
Figure 8.18 Ephedra viridis, known by the common name Mormon tea, grows in the western United States. (credit: US National Park Service, USDA-NRCS PLANTS Database)

 

Concept in Action

Watch this BBC video describing the amazing strangeness of Welwitschia.

Glossary

cone: the ovulate strobilus on gymnosperms that contains ovules
conifer: the dominant division of gymnosperms with the most variety of species
cycad: a division of gymnosperms that grow in tropical climates and resemble palm trees
gingkophyte: a division of gymnosperm with one living species, the Gingko biloba, a tree with fan-shaped leaves
gnetophyte: a division of gymnosperms with varied morphological features that produce vessel elements in their woody tissues
gymnosperm: a seed plant with naked seeds (seeds exposed on modified leaves or in cones)
megasporocyte: a megaspore mother cell; larger spore that germinates into a female gametophyte in a heterosporous plant
microsporocyte: smaller spore that produces a male gametophyte in a heterosporous plant

References

Biology and the Citizen (2023) Copyright © 2022 by Utah State University is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

License

Icon for the Creative Commons Attribution 4.0 International License

ABE 074: Biology Copyright © 2024 by Tacoma Community College is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book